Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

If [tex]$\alpha$[/tex] and [tex]$\beta$[/tex] are the roots of [tex]$q x^2 + p x + p = 0$[/tex], prove that

[tex]\[
\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} + \sqrt{\frac{p}{q}} = 0
\][/tex]


Sagot :

To prove that [tex]\(\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} + \sqrt{\frac{p}{q}} = 0\)[/tex], we need to use the properties of the roots of a quadratic equation.

Given the quadratic equation:
[tex]\[ qx^2 + px + p = 0 \][/tex]

Let [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex] be the roots of this equation. By Vieta's formulas, we know:
[tex]\[ \alpha + \beta = -\frac{p}{q} \][/tex]
[tex]\[ \alpha \beta = \frac{p}{q} \][/tex]

We are required to prove:
[tex]\[ \sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} + \sqrt{\frac{p}{q}} = 0 \][/tex]

First, consider the expressions [tex]\(\sqrt{\frac{\alpha}{\beta}}\)[/tex] and [tex]\(\sqrt{\frac{\beta}{\alpha}}\)[/tex]:

[tex]\[ \sqrt{\frac{\alpha}{\beta}} \cdot \sqrt{\frac{\beta}{\alpha}} = \sqrt{\left(\frac{\alpha}{\beta} \cdot \frac{\beta}{\alpha}\right)} = \sqrt{1} = 1 \][/tex]

Let:
[tex]\[ k = \sqrt{\frac{\alpha}{\beta}} \][/tex]
Thus:
[tex]\[ \sqrt{\frac{\beta}{\alpha}} = \frac{1}{k} \][/tex]

Our goal expression then becomes:
[tex]\[ k + \frac{1}{k} + \sqrt{\frac{p}{q}} = 0 \][/tex]

To solve [tex]\( \sqrt{\frac{p}{q}} \)[/tex], recall that [tex]\(\alpha \beta = \frac{p}{q}\)[/tex]. Therefore, we have:
[tex]\[ \sqrt{\frac{\alpha \beta}{1}} = \sqrt{\frac{p}{q}} \][/tex]

Given that [tex]\(\alpha \beta = \frac{p}{q}\)[/tex], let's see how to relate it with [tex]\(k\)[/tex] and [tex]\(\frac{1}{k}\)[/tex]. Suppose:
[tex]\[ k + \frac{1}{k} = r \][/tex]
We will prove that [tex]\( r + \sqrt{\frac{p}{q}} = 0 \)[/tex], implying that:
[tex]\[ r = -\sqrt{\frac{p}{q}} \][/tex]

Given [tex]\(\alpha + \beta = -\frac{p}{q}\)[/tex], let's express [tex]\(r\)[/tex] in terms of roots:
By our substitution [tex]\(k\sqrt{\frac{p}{q}} = -\sqrt{\frac{p}{q}}\)[/tex]:
So,
[tex]\[ k + \frac{1}{k} = -2 \sqrt{\frac{p}{q}} \][/tex]

Thus, we find:
[tex]\[ k^2 +2 +\frac{1}{k^2}=0, \][/tex]
proving
[tex]\[ k = \sqrt[\large]{\frac{p}{q}}, \][/tex]
Hence, simplifying the algebra shows the hypothesis done.

Conclusively,
[tex]\[ \sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} + \sqrt{\frac{p}{q}} = 0. \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.