Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the relationship between the real zeros and the [tex]\( x \)[/tex]-intercepts of the function [tex]\( y = \log_4(x - 2) \)[/tex], let's follow these steps:
1. Set the function equal to zero to find [tex]\( x \)[/tex]-intercepts:
[tex]\[ y = \log_4(x - 2) = 0 \][/tex]
2. Solve for [tex]\( x \)[/tex]:
The equation [tex]\( \log_4(x - 2) = 0 \)[/tex] can be rewritten in exponential form as:
[tex]\[ 4^0 = x - 2 \][/tex]
Since [tex]\( 4^0 = 1 \)[/tex]:
[tex]\[ 1 = x - 2 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = 1 + 2 \][/tex]
[tex]\[ x = 3 \][/tex]
So, the solution to the equation [tex]\( \log_4(x - 2) = 0 \)[/tex] is [tex]\( x = 3 \)[/tex]. Therefore, the function has an [tex]\( x \)[/tex]-intercept at [tex]\( x = 3 \)[/tex].
3. Check for vertical asymptotes:
The function [tex]\( y = \log_4(x - 2) \)[/tex] has a vertical asymptote where the argument of the logarithm is zero. The argument is [tex]\( x - 2 \)[/tex], so we set it to zero:
[tex]\[ x - 2 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = 2 \][/tex]
Thus, the function has a vertical asymptote at [tex]\( x = 2 \)[/tex].
From this analysis, we can conclude:
- The function [tex]\( y = \log_4(x - 2) \)[/tex] has an [tex]\( x \)[/tex]-intercept at [tex]\( x = 3 \)[/tex].
- There is a vertical asymptote at [tex]\( x = 2 \)[/tex].
Given the choices, the correct relationship is:
"When you set the function equal to zero, the solution is [tex]\( x = 3 \)[/tex]; therefore, the graph has an [tex]\( x \)[/tex]-intercept at [tex]\( x = 3 \)[/tex]."
1. Set the function equal to zero to find [tex]\( x \)[/tex]-intercepts:
[tex]\[ y = \log_4(x - 2) = 0 \][/tex]
2. Solve for [tex]\( x \)[/tex]:
The equation [tex]\( \log_4(x - 2) = 0 \)[/tex] can be rewritten in exponential form as:
[tex]\[ 4^0 = x - 2 \][/tex]
Since [tex]\( 4^0 = 1 \)[/tex]:
[tex]\[ 1 = x - 2 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = 1 + 2 \][/tex]
[tex]\[ x = 3 \][/tex]
So, the solution to the equation [tex]\( \log_4(x - 2) = 0 \)[/tex] is [tex]\( x = 3 \)[/tex]. Therefore, the function has an [tex]\( x \)[/tex]-intercept at [tex]\( x = 3 \)[/tex].
3. Check for vertical asymptotes:
The function [tex]\( y = \log_4(x - 2) \)[/tex] has a vertical asymptote where the argument of the logarithm is zero. The argument is [tex]\( x - 2 \)[/tex], so we set it to zero:
[tex]\[ x - 2 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = 2 \][/tex]
Thus, the function has a vertical asymptote at [tex]\( x = 2 \)[/tex].
From this analysis, we can conclude:
- The function [tex]\( y = \log_4(x - 2) \)[/tex] has an [tex]\( x \)[/tex]-intercept at [tex]\( x = 3 \)[/tex].
- There is a vertical asymptote at [tex]\( x = 2 \)[/tex].
Given the choices, the correct relationship is:
"When you set the function equal to zero, the solution is [tex]\( x = 3 \)[/tex]; therefore, the graph has an [tex]\( x \)[/tex]-intercept at [tex]\( x = 3 \)[/tex]."
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.