Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the area bounded by the curve [tex]\(y=2x^2+x+1\)[/tex], the x-axis, and the vertical lines [tex]\(x=1\)[/tex] and [tex]\(x=3\)[/tex], we need to evaluate the definite integral of the function [tex]\(y=2x^2+x+1\)[/tex] with respect to [tex]\(x\)[/tex] from 1 to 3.
Let's break down the steps:
1. Define the function to be integrated: The function given is [tex]\( f(x) = 2x^2 + x + 1 \)[/tex].
2. Set up the definite integral: To find the bounded area, we need to integrate [tex]\( f(x) \)[/tex] from 1 to 3.
[tex]\[ \text{Area} = \int_{1}^{3} (2x^2 + x + 1) \, dx \][/tex]
3. Integrate the function: We will find the antiderivative of [tex]\( f(x) \)[/tex]:
[tex]\[ \int (2x^2 + x + 1) \, dx \][/tex]
- The antiderivative of [tex]\(2x^2\)[/tex] is [tex]\(\frac{2x^3}{3}\)[/tex].
- The antiderivative of [tex]\(x\)[/tex] is [tex]\(\frac{x^2}{2}\)[/tex].
- The antiderivative of [tex]\(1\)[/tex] is [tex]\(x\)[/tex].
Therefore,
[tex]\[ \int (2x^2 + x + 1) \, dx = \frac{2x^3}{3} + \frac{x^2}{2} + x + C \][/tex]
4. Evaluate the definite integral: We need to find the value of the antiderivative at the upper and lower limits and subtract the two.
Evaluating the antiderivative at [tex]\(x = 3\)[/tex]:
[tex]\[ \left[ \frac{2(3)^3}{3} + \frac{(3)^2}{2} + 3 \right] = \left[ \frac{54}{3} + \frac{9}{2} + 3 \right] \][/tex]
[tex]\[ = 18 + 4.5 + 3 = 25.5 \][/tex]
Evaluating the antiderivative at [tex]\(x = 1\)[/tex]:
[tex]\[ \left[ \frac{2(1)^3}{3} + \frac{(1)^2}{2} + 1 \right] = \left[ \frac{2}{3} + \frac{1}{2} + 1 \right] \][/tex]
[tex]\[ = \frac{2}{3} + \frac{1}{2} + 1 = \frac{4}{6} + \frac{3}{6} + 1 = \frac{7}{6} + 1 = \frac{13}{6} \approx 2.1667 \][/tex]
Finally, subtract these two results:
[tex]\[ \left( 25.5 \right) - \left( \frac{13}{6} \right) \][/tex]
Converting [tex]\(\frac{13}{6}\)[/tex] to a decimal:
[tex]\[ \frac{13}{6} \approx 2.1667 \][/tex]
So the area is:
[tex]\[ 25.5 - 2.1667 \approx 23.3333 \][/tex]
Thus, the area bounded by the curve [tex]\( y = 2x^2 + x + 1 \)[/tex], the x-axis, and the vertical lines [tex]\( x = 1 \)[/tex] and [tex]\( x = 3 \)[/tex] is approximately [tex]\( 23.33 \)[/tex] square units.
Let's break down the steps:
1. Define the function to be integrated: The function given is [tex]\( f(x) = 2x^2 + x + 1 \)[/tex].
2. Set up the definite integral: To find the bounded area, we need to integrate [tex]\( f(x) \)[/tex] from 1 to 3.
[tex]\[ \text{Area} = \int_{1}^{3} (2x^2 + x + 1) \, dx \][/tex]
3. Integrate the function: We will find the antiderivative of [tex]\( f(x) \)[/tex]:
[tex]\[ \int (2x^2 + x + 1) \, dx \][/tex]
- The antiderivative of [tex]\(2x^2\)[/tex] is [tex]\(\frac{2x^3}{3}\)[/tex].
- The antiderivative of [tex]\(x\)[/tex] is [tex]\(\frac{x^2}{2}\)[/tex].
- The antiderivative of [tex]\(1\)[/tex] is [tex]\(x\)[/tex].
Therefore,
[tex]\[ \int (2x^2 + x + 1) \, dx = \frac{2x^3}{3} + \frac{x^2}{2} + x + C \][/tex]
4. Evaluate the definite integral: We need to find the value of the antiderivative at the upper and lower limits and subtract the two.
Evaluating the antiderivative at [tex]\(x = 3\)[/tex]:
[tex]\[ \left[ \frac{2(3)^3}{3} + \frac{(3)^2}{2} + 3 \right] = \left[ \frac{54}{3} + \frac{9}{2} + 3 \right] \][/tex]
[tex]\[ = 18 + 4.5 + 3 = 25.5 \][/tex]
Evaluating the antiderivative at [tex]\(x = 1\)[/tex]:
[tex]\[ \left[ \frac{2(1)^3}{3} + \frac{(1)^2}{2} + 1 \right] = \left[ \frac{2}{3} + \frac{1}{2} + 1 \right] \][/tex]
[tex]\[ = \frac{2}{3} + \frac{1}{2} + 1 = \frac{4}{6} + \frac{3}{6} + 1 = \frac{7}{6} + 1 = \frac{13}{6} \approx 2.1667 \][/tex]
Finally, subtract these two results:
[tex]\[ \left( 25.5 \right) - \left( \frac{13}{6} \right) \][/tex]
Converting [tex]\(\frac{13}{6}\)[/tex] to a decimal:
[tex]\[ \frac{13}{6} \approx 2.1667 \][/tex]
So the area is:
[tex]\[ 25.5 - 2.1667 \approx 23.3333 \][/tex]
Thus, the area bounded by the curve [tex]\( y = 2x^2 + x + 1 \)[/tex], the x-axis, and the vertical lines [tex]\( x = 1 \)[/tex] and [tex]\( x = 3 \)[/tex] is approximately [tex]\( 23.33 \)[/tex] square units.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.