Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the area bounded by the curve [tex]\(y=2x^2+x+1\)[/tex], the x-axis, and the vertical lines [tex]\(x=1\)[/tex] and [tex]\(x=3\)[/tex], we need to evaluate the definite integral of the function [tex]\(y=2x^2+x+1\)[/tex] with respect to [tex]\(x\)[/tex] from 1 to 3.
Let's break down the steps:
1. Define the function to be integrated: The function given is [tex]\( f(x) = 2x^2 + x + 1 \)[/tex].
2. Set up the definite integral: To find the bounded area, we need to integrate [tex]\( f(x) \)[/tex] from 1 to 3.
[tex]\[ \text{Area} = \int_{1}^{3} (2x^2 + x + 1) \, dx \][/tex]
3. Integrate the function: We will find the antiderivative of [tex]\( f(x) \)[/tex]:
[tex]\[ \int (2x^2 + x + 1) \, dx \][/tex]
- The antiderivative of [tex]\(2x^2\)[/tex] is [tex]\(\frac{2x^3}{3}\)[/tex].
- The antiderivative of [tex]\(x\)[/tex] is [tex]\(\frac{x^2}{2}\)[/tex].
- The antiderivative of [tex]\(1\)[/tex] is [tex]\(x\)[/tex].
Therefore,
[tex]\[ \int (2x^2 + x + 1) \, dx = \frac{2x^3}{3} + \frac{x^2}{2} + x + C \][/tex]
4. Evaluate the definite integral: We need to find the value of the antiderivative at the upper and lower limits and subtract the two.
Evaluating the antiderivative at [tex]\(x = 3\)[/tex]:
[tex]\[ \left[ \frac{2(3)^3}{3} + \frac{(3)^2}{2} + 3 \right] = \left[ \frac{54}{3} + \frac{9}{2} + 3 \right] \][/tex]
[tex]\[ = 18 + 4.5 + 3 = 25.5 \][/tex]
Evaluating the antiderivative at [tex]\(x = 1\)[/tex]:
[tex]\[ \left[ \frac{2(1)^3}{3} + \frac{(1)^2}{2} + 1 \right] = \left[ \frac{2}{3} + \frac{1}{2} + 1 \right] \][/tex]
[tex]\[ = \frac{2}{3} + \frac{1}{2} + 1 = \frac{4}{6} + \frac{3}{6} + 1 = \frac{7}{6} + 1 = \frac{13}{6} \approx 2.1667 \][/tex]
Finally, subtract these two results:
[tex]\[ \left( 25.5 \right) - \left( \frac{13}{6} \right) \][/tex]
Converting [tex]\(\frac{13}{6}\)[/tex] to a decimal:
[tex]\[ \frac{13}{6} \approx 2.1667 \][/tex]
So the area is:
[tex]\[ 25.5 - 2.1667 \approx 23.3333 \][/tex]
Thus, the area bounded by the curve [tex]\( y = 2x^2 + x + 1 \)[/tex], the x-axis, and the vertical lines [tex]\( x = 1 \)[/tex] and [tex]\( x = 3 \)[/tex] is approximately [tex]\( 23.33 \)[/tex] square units.
Let's break down the steps:
1. Define the function to be integrated: The function given is [tex]\( f(x) = 2x^2 + x + 1 \)[/tex].
2. Set up the definite integral: To find the bounded area, we need to integrate [tex]\( f(x) \)[/tex] from 1 to 3.
[tex]\[ \text{Area} = \int_{1}^{3} (2x^2 + x + 1) \, dx \][/tex]
3. Integrate the function: We will find the antiderivative of [tex]\( f(x) \)[/tex]:
[tex]\[ \int (2x^2 + x + 1) \, dx \][/tex]
- The antiderivative of [tex]\(2x^2\)[/tex] is [tex]\(\frac{2x^3}{3}\)[/tex].
- The antiderivative of [tex]\(x\)[/tex] is [tex]\(\frac{x^2}{2}\)[/tex].
- The antiderivative of [tex]\(1\)[/tex] is [tex]\(x\)[/tex].
Therefore,
[tex]\[ \int (2x^2 + x + 1) \, dx = \frac{2x^3}{3} + \frac{x^2}{2} + x + C \][/tex]
4. Evaluate the definite integral: We need to find the value of the antiderivative at the upper and lower limits and subtract the two.
Evaluating the antiderivative at [tex]\(x = 3\)[/tex]:
[tex]\[ \left[ \frac{2(3)^3}{3} + \frac{(3)^2}{2} + 3 \right] = \left[ \frac{54}{3} + \frac{9}{2} + 3 \right] \][/tex]
[tex]\[ = 18 + 4.5 + 3 = 25.5 \][/tex]
Evaluating the antiderivative at [tex]\(x = 1\)[/tex]:
[tex]\[ \left[ \frac{2(1)^3}{3} + \frac{(1)^2}{2} + 1 \right] = \left[ \frac{2}{3} + \frac{1}{2} + 1 \right] \][/tex]
[tex]\[ = \frac{2}{3} + \frac{1}{2} + 1 = \frac{4}{6} + \frac{3}{6} + 1 = \frac{7}{6} + 1 = \frac{13}{6} \approx 2.1667 \][/tex]
Finally, subtract these two results:
[tex]\[ \left( 25.5 \right) - \left( \frac{13}{6} \right) \][/tex]
Converting [tex]\(\frac{13}{6}\)[/tex] to a decimal:
[tex]\[ \frac{13}{6} \approx 2.1667 \][/tex]
So the area is:
[tex]\[ 25.5 - 2.1667 \approx 23.3333 \][/tex]
Thus, the area bounded by the curve [tex]\( y = 2x^2 + x + 1 \)[/tex], the x-axis, and the vertical lines [tex]\( x = 1 \)[/tex] and [tex]\( x = 3 \)[/tex] is approximately [tex]\( 23.33 \)[/tex] square units.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.