Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's simplify the product [tex]\((b - 2c)(-3b + c)\)[/tex] step by step.
First, distribute each term in the first binomial to every term in the second binomial:
[tex]\[ (b - 2c)(-3b + c) \][/tex]
Using the distributive property, this expands to:
[tex]\[ b \cdot (-3b) + b \cdot c - 2c \cdot (-3b) - 2c \cdot c \][/tex]
Now, calculate each individual term:
[tex]\[ b \cdot (-3b) = -3b^2 \][/tex]
[tex]\[ b \cdot c = bc \][/tex]
[tex]\[ -2c \cdot (-3b) = 6bc \][/tex]
[tex]\[ -2c \cdot c = -2c^2 \][/tex]
So the expression is now:
[tex]\[ -3b^2 + bc + 6bc - 2c^2 \][/tex]
Combine like terms:
[tex]\[ -3b^2 + (bc + 6bc) - 2c^2 \][/tex]
[tex]\[ -3b^2 + 7bc - 2c^2 \][/tex]
Now, let's analyze the simplified product [tex]\(-3b^2 + 7bc - 2c^2\)[/tex]:
1. Number of terms: The simplified product has three terms: [tex]\(-3b^2\)[/tex], [tex]\(7bc\)[/tex], and [tex]\(-2c^2\)[/tex].
2. Degree of the polynomial: The highest degree of any term in the polynomial is 2, as the terms are [tex]\(-3b^2\)[/tex], which has a degree of 2, [tex]\(7bc\)[/tex], which has a degree of 2 (since [tex]\(b\)[/tex] and [tex]\(c\)[/tex] are both to the power of 1 and their sum is 2), and [tex]\(-2c^2\)[/tex], which has a degree of 2.
3. Number of negative terms: The polynomial has two negative terms: [tex]\(-3b^2\)[/tex] and [tex]\(-2c^2\)[/tex].
Given this analysis, the correct statements are:
- The simplified product has a degree of 2.
- The simplified product, in standard form, has exactly 2 negative terms.
First, distribute each term in the first binomial to every term in the second binomial:
[tex]\[ (b - 2c)(-3b + c) \][/tex]
Using the distributive property, this expands to:
[tex]\[ b \cdot (-3b) + b \cdot c - 2c \cdot (-3b) - 2c \cdot c \][/tex]
Now, calculate each individual term:
[tex]\[ b \cdot (-3b) = -3b^2 \][/tex]
[tex]\[ b \cdot c = bc \][/tex]
[tex]\[ -2c \cdot (-3b) = 6bc \][/tex]
[tex]\[ -2c \cdot c = -2c^2 \][/tex]
So the expression is now:
[tex]\[ -3b^2 + bc + 6bc - 2c^2 \][/tex]
Combine like terms:
[tex]\[ -3b^2 + (bc + 6bc) - 2c^2 \][/tex]
[tex]\[ -3b^2 + 7bc - 2c^2 \][/tex]
Now, let's analyze the simplified product [tex]\(-3b^2 + 7bc - 2c^2\)[/tex]:
1. Number of terms: The simplified product has three terms: [tex]\(-3b^2\)[/tex], [tex]\(7bc\)[/tex], and [tex]\(-2c^2\)[/tex].
2. Degree of the polynomial: The highest degree of any term in the polynomial is 2, as the terms are [tex]\(-3b^2\)[/tex], which has a degree of 2, [tex]\(7bc\)[/tex], which has a degree of 2 (since [tex]\(b\)[/tex] and [tex]\(c\)[/tex] are both to the power of 1 and their sum is 2), and [tex]\(-2c^2\)[/tex], which has a degree of 2.
3. Number of negative terms: The polynomial has two negative terms: [tex]\(-3b^2\)[/tex] and [tex]\(-2c^2\)[/tex].
Given this analysis, the correct statements are:
- The simplified product has a degree of 2.
- The simplified product, in standard form, has exactly 2 negative terms.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.