Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's simplify the product [tex]\((b - 2c)(-3b + c)\)[/tex] step by step.
First, distribute each term in the first binomial to every term in the second binomial:
[tex]\[ (b - 2c)(-3b + c) \][/tex]
Using the distributive property, this expands to:
[tex]\[ b \cdot (-3b) + b \cdot c - 2c \cdot (-3b) - 2c \cdot c \][/tex]
Now, calculate each individual term:
[tex]\[ b \cdot (-3b) = -3b^2 \][/tex]
[tex]\[ b \cdot c = bc \][/tex]
[tex]\[ -2c \cdot (-3b) = 6bc \][/tex]
[tex]\[ -2c \cdot c = -2c^2 \][/tex]
So the expression is now:
[tex]\[ -3b^2 + bc + 6bc - 2c^2 \][/tex]
Combine like terms:
[tex]\[ -3b^2 + (bc + 6bc) - 2c^2 \][/tex]
[tex]\[ -3b^2 + 7bc - 2c^2 \][/tex]
Now, let's analyze the simplified product [tex]\(-3b^2 + 7bc - 2c^2\)[/tex]:
1. Number of terms: The simplified product has three terms: [tex]\(-3b^2\)[/tex], [tex]\(7bc\)[/tex], and [tex]\(-2c^2\)[/tex].
2. Degree of the polynomial: The highest degree of any term in the polynomial is 2, as the terms are [tex]\(-3b^2\)[/tex], which has a degree of 2, [tex]\(7bc\)[/tex], which has a degree of 2 (since [tex]\(b\)[/tex] and [tex]\(c\)[/tex] are both to the power of 1 and their sum is 2), and [tex]\(-2c^2\)[/tex], which has a degree of 2.
3. Number of negative terms: The polynomial has two negative terms: [tex]\(-3b^2\)[/tex] and [tex]\(-2c^2\)[/tex].
Given this analysis, the correct statements are:
- The simplified product has a degree of 2.
- The simplified product, in standard form, has exactly 2 negative terms.
First, distribute each term in the first binomial to every term in the second binomial:
[tex]\[ (b - 2c)(-3b + c) \][/tex]
Using the distributive property, this expands to:
[tex]\[ b \cdot (-3b) + b \cdot c - 2c \cdot (-3b) - 2c \cdot c \][/tex]
Now, calculate each individual term:
[tex]\[ b \cdot (-3b) = -3b^2 \][/tex]
[tex]\[ b \cdot c = bc \][/tex]
[tex]\[ -2c \cdot (-3b) = 6bc \][/tex]
[tex]\[ -2c \cdot c = -2c^2 \][/tex]
So the expression is now:
[tex]\[ -3b^2 + bc + 6bc - 2c^2 \][/tex]
Combine like terms:
[tex]\[ -3b^2 + (bc + 6bc) - 2c^2 \][/tex]
[tex]\[ -3b^2 + 7bc - 2c^2 \][/tex]
Now, let's analyze the simplified product [tex]\(-3b^2 + 7bc - 2c^2\)[/tex]:
1. Number of terms: The simplified product has three terms: [tex]\(-3b^2\)[/tex], [tex]\(7bc\)[/tex], and [tex]\(-2c^2\)[/tex].
2. Degree of the polynomial: The highest degree of any term in the polynomial is 2, as the terms are [tex]\(-3b^2\)[/tex], which has a degree of 2, [tex]\(7bc\)[/tex], which has a degree of 2 (since [tex]\(b\)[/tex] and [tex]\(c\)[/tex] are both to the power of 1 and their sum is 2), and [tex]\(-2c^2\)[/tex], which has a degree of 2.
3. Number of negative terms: The polynomial has two negative terms: [tex]\(-3b^2\)[/tex] and [tex]\(-2c^2\)[/tex].
Given this analysis, the correct statements are:
- The simplified product has a degree of 2.
- The simplified product, in standard form, has exactly 2 negative terms.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.