At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's systematically analyze each of the given functions to determine which one can have a range that includes [tex]\(-4\)[/tex].
1. Function: [tex]\( y = \sqrt{x} - 5 \)[/tex]
Let's see if it is possible for [tex]\( y = -4 \)[/tex]:
[tex]\[ -4 = \sqrt{x} - 5 \][/tex]
By adding 5 to both sides, we obtain:
[tex]\[ 1 = \sqrt{x} \][/tex]
Squaring both sides to eliminate the square root, we get:
[tex]\[ x = 1 \][/tex]
Since [tex]\( x = 1 \)[/tex] is a valid value (it's non-negative), [tex]\( y = \sqrt{x} - 5 \)[/tex] can indeed equal [tex]\(-4\)[/tex] when [tex]\( x = 1 \)[/tex].
Thus, the range of [tex]\( y = \sqrt{x} - 5 \)[/tex] includes [tex]\(-4\)[/tex].
2. Function: [tex]\( y = \sqrt{x} + 5 \)[/tex]
Similarly, we try to see if [tex]\( y = -4 \)[/tex] is possible:
[tex]\[ -4 = \sqrt{x} + 5 \][/tex]
Subtracting 5 from both sides, we find:
[tex]\[ -9 = \sqrt{x} \][/tex]
This result is impossible because the square root of [tex]\( x \)[/tex] (where [tex]\( x \geq 0 \)[/tex]) is always non-negative. Thus, [tex]\( y = \sqrt{x} + 5 \)[/tex] cannot have a value of [tex]\(-4\)[/tex].
3. Function: [tex]\( y = \sqrt{x+5} \)[/tex]
Check if [tex]\( y = -4 \)[/tex]:
[tex]\[ -4 = \sqrt{x+5} \][/tex]
Similar to the previous case, squaring both sides gives:
[tex]\[ 16 = x + 5 \][/tex]
Solving for [tex]\( x \)[/tex], we get:
[tex]\[ x = 16 - 5 = 11 \][/tex]
However, when we checked this previously, squaring gave an incorrect condition since square roots do not yield negative numbers.
In this particular circumstance, [tex]\( y = \sqrt{x+5} \)[/tex] cannot equal [tex]\(-4\)[/tex].
4. Function: [tex]\( y = \sqrt{x-5} \)[/tex]
Let's investigate if [tex]\( y = -4 \)[/tex]:
[tex]\[ -4 = \sqrt{x-5} \][/tex]
Squaring both sides results in:
[tex]\[ 16 = x - 5 \][/tex]
Solving for [tex]\( x \)[/tex], we get:
[tex]\[ x = 16 + 5 = 21 \][/tex]
Once again, this situation results from incorrectly calculating negative roots.
Therefore, [tex]\( y = \sqrt{x-5} \)[/tex] also cannot equal [tex]\(-4\)[/tex].
From this detailed examination, we conclude that the range of the function [tex]\( y = \sqrt{x} - 5 \)[/tex] includes [tex]\(-4\)[/tex].
1. Function: [tex]\( y = \sqrt{x} - 5 \)[/tex]
Let's see if it is possible for [tex]\( y = -4 \)[/tex]:
[tex]\[ -4 = \sqrt{x} - 5 \][/tex]
By adding 5 to both sides, we obtain:
[tex]\[ 1 = \sqrt{x} \][/tex]
Squaring both sides to eliminate the square root, we get:
[tex]\[ x = 1 \][/tex]
Since [tex]\( x = 1 \)[/tex] is a valid value (it's non-negative), [tex]\( y = \sqrt{x} - 5 \)[/tex] can indeed equal [tex]\(-4\)[/tex] when [tex]\( x = 1 \)[/tex].
Thus, the range of [tex]\( y = \sqrt{x} - 5 \)[/tex] includes [tex]\(-4\)[/tex].
2. Function: [tex]\( y = \sqrt{x} + 5 \)[/tex]
Similarly, we try to see if [tex]\( y = -4 \)[/tex] is possible:
[tex]\[ -4 = \sqrt{x} + 5 \][/tex]
Subtracting 5 from both sides, we find:
[tex]\[ -9 = \sqrt{x} \][/tex]
This result is impossible because the square root of [tex]\( x \)[/tex] (where [tex]\( x \geq 0 \)[/tex]) is always non-negative. Thus, [tex]\( y = \sqrt{x} + 5 \)[/tex] cannot have a value of [tex]\(-4\)[/tex].
3. Function: [tex]\( y = \sqrt{x+5} \)[/tex]
Check if [tex]\( y = -4 \)[/tex]:
[tex]\[ -4 = \sqrt{x+5} \][/tex]
Similar to the previous case, squaring both sides gives:
[tex]\[ 16 = x + 5 \][/tex]
Solving for [tex]\( x \)[/tex], we get:
[tex]\[ x = 16 - 5 = 11 \][/tex]
However, when we checked this previously, squaring gave an incorrect condition since square roots do not yield negative numbers.
In this particular circumstance, [tex]\( y = \sqrt{x+5} \)[/tex] cannot equal [tex]\(-4\)[/tex].
4. Function: [tex]\( y = \sqrt{x-5} \)[/tex]
Let's investigate if [tex]\( y = -4 \)[/tex]:
[tex]\[ -4 = \sqrt{x-5} \][/tex]
Squaring both sides results in:
[tex]\[ 16 = x - 5 \][/tex]
Solving for [tex]\( x \)[/tex], we get:
[tex]\[ x = 16 + 5 = 21 \][/tex]
Once again, this situation results from incorrectly calculating negative roots.
Therefore, [tex]\( y = \sqrt{x-5} \)[/tex] also cannot equal [tex]\(-4\)[/tex].
From this detailed examination, we conclude that the range of the function [tex]\( y = \sqrt{x} - 5 \)[/tex] includes [tex]\(-4\)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.