Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the quadratic equation [tex]\(2n^2 = 10n + 48\)[/tex], follow these steps:
1. Rewrite the equation in standard form:
A quadratic equation should be written in the form [tex]\(ax^2 + bx + c = 0\)[/tex]. Start by moving all terms to one side of the equation to set it to zero.
[tex]\[ 2n^2 - 10n - 48 = 0 \][/tex]
2. Simplify the equation:
The current equation [tex]\(2n^2 - 10n - 48 = 0\)[/tex] is already simplified with all terms on one side.
3. Factor the quadratic equation:
We look to factorize the quadratic equation [tex]\(2n^2 - 10n - 48\)[/tex]. To do this, let's find numbers that multiply to [tex]\(2 \cdot (-48) = -96\)[/tex] and add up to [tex]\(-10\)[/tex].
The pair of numbers that meet this condition are [tex]\(-16\)[/tex] and [tex]\(6\)[/tex], because:
[tex]\[ -16 \cdot 6 = -96 \quad \text{and} \quad -16 + 6 = -10 \][/tex]
4. Rewrite the middle term using these numbers:
Split the middle term [tex]\(-10n\)[/tex] using [tex]\(-16n\)[/tex] and [tex]\(6n\)[/tex].
[tex]\[ 2n^2 - 16n + 6n - 48 = 0 \][/tex]
5. Factor by grouping:
Group the terms to factor by grouping:
[tex]\[ (2n^2 - 16n) + (6n - 48) = 0 \][/tex]
Factor out the common factors from each group:
[tex]\[ 2n(n - 8) + 6(n - 8) = 0 \][/tex]
6. Factor out the common binomial factor:
Notice that [tex]\((n - 8)\)[/tex] is common in both groups.
[tex]\[ (2n + 6)(n - 8) = 0 \][/tex]
Simplify further:
[tex]\[ 2(n + 3)(n - 8) = 0 \][/tex]
7. Set each factor to zero and solve for [tex]\(n\)[/tex]:
[tex]\[ 2(n + 3) = 0 \quad \text{or} \quad n - 8 = 0 \][/tex]
Solve for [tex]\(n\)[/tex] in each case:
[tex]\[ n + 3 = 0 \implies n = -3 \][/tex]
[tex]\[ n - 8 = 0 \implies n = 8 \][/tex]
Therefore, the solutions to the quadratic equation [tex]\(2n^2 = 10n + 48\)[/tex] are:
[tex]\[ \boxed{-3 \text{ and } 8} \][/tex]
1. Rewrite the equation in standard form:
A quadratic equation should be written in the form [tex]\(ax^2 + bx + c = 0\)[/tex]. Start by moving all terms to one side of the equation to set it to zero.
[tex]\[ 2n^2 - 10n - 48 = 0 \][/tex]
2. Simplify the equation:
The current equation [tex]\(2n^2 - 10n - 48 = 0\)[/tex] is already simplified with all terms on one side.
3. Factor the quadratic equation:
We look to factorize the quadratic equation [tex]\(2n^2 - 10n - 48\)[/tex]. To do this, let's find numbers that multiply to [tex]\(2 \cdot (-48) = -96\)[/tex] and add up to [tex]\(-10\)[/tex].
The pair of numbers that meet this condition are [tex]\(-16\)[/tex] and [tex]\(6\)[/tex], because:
[tex]\[ -16 \cdot 6 = -96 \quad \text{and} \quad -16 + 6 = -10 \][/tex]
4. Rewrite the middle term using these numbers:
Split the middle term [tex]\(-10n\)[/tex] using [tex]\(-16n\)[/tex] and [tex]\(6n\)[/tex].
[tex]\[ 2n^2 - 16n + 6n - 48 = 0 \][/tex]
5. Factor by grouping:
Group the terms to factor by grouping:
[tex]\[ (2n^2 - 16n) + (6n - 48) = 0 \][/tex]
Factor out the common factors from each group:
[tex]\[ 2n(n - 8) + 6(n - 8) = 0 \][/tex]
6. Factor out the common binomial factor:
Notice that [tex]\((n - 8)\)[/tex] is common in both groups.
[tex]\[ (2n + 6)(n - 8) = 0 \][/tex]
Simplify further:
[tex]\[ 2(n + 3)(n - 8) = 0 \][/tex]
7. Set each factor to zero and solve for [tex]\(n\)[/tex]:
[tex]\[ 2(n + 3) = 0 \quad \text{or} \quad n - 8 = 0 \][/tex]
Solve for [tex]\(n\)[/tex] in each case:
[tex]\[ n + 3 = 0 \implies n = -3 \][/tex]
[tex]\[ n - 8 = 0 \implies n = 8 \][/tex]
Therefore, the solutions to the quadratic equation [tex]\(2n^2 = 10n + 48\)[/tex] are:
[tex]\[ \boxed{-3 \text{ and } 8} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.