Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! Let's solve the problem step by step.
### Part (a): Area Between the Curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( x \)[/tex]-axis
We are asked to find the area between [tex]\( y = 2x^2 \)[/tex] and the [tex]\( x \)[/tex]-axis, bounded by the lines [tex]\( x = 1 \)[/tex] and [tex]\( x = 3 \)[/tex].
1. Define the Function and Limits of Integration:
- The function is [tex]\( y = 2x^2 \)[/tex].
- The area is bounded by [tex]\( x = 1 \)[/tex] and [tex]\( x = 3 \)[/tex].
2. Set Up the Integral:
The area under the curve from [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex] is given by the definite integral:
[tex]\[ \text{Area} = \int_{1}^{3} 2x^2 \, dx \][/tex]
3. Evaluate the Integral:
- First, find the antiderivative of [tex]\( 2x^2 \)[/tex]:
[tex]\[ \int 2x^2 \, dx = \frac{2x^3}{3} + C \][/tex]
- Now, apply the limits of integration:
[tex]\[ \text{Area} = \left[ \frac{2x^3}{3} \right]_{1}^{3} \][/tex]
4. Compute the Value:
- Evaluate at [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{2 \cdot 3^3}{3} = \frac{2 \cdot 27}{3} = 18 \][/tex]
- Evaluate at [tex]\( x = 1 \)[/tex]:
[tex]\[ \frac{2 \cdot 1^3}{3} = \frac{2}{3} \][/tex]
- Find the difference:
[tex]\[ \text{Area} = 18 - \frac{2}{3} = \frac{54}{3} - \frac{2}{3} = \frac{52}{3} \approx 17.333333333333332 \][/tex]
So, the area between the curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( x \)[/tex]-axis, from [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex], is approximately [tex]\( 17.33 \)[/tex] square units.
### Part (b): Area Between the Curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( y \)[/tex]-axis
For this part, we need to consider the area between the curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( y \)[/tex]-axis, bounded by the lines at [tex]\( x = 1 \)[/tex] and [tex]\( x = 3 \)[/tex].
1. Convert the Function to Solve for [tex]\( x \)[/tex]:
- The given function is [tex]\( y = 2x^2 \)[/tex].
- Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ x = \sqrt{\frac{y}{2}} \][/tex]
2. Define the Limits of Integration:
- From [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex]:
- At [tex]\( x = 1 \)[/tex], [tex]\( y = 2(1)^2 = 2 \)[/tex].
- At [tex]\( x = 3 \)[/tex], [tex]\( y = 2(3)^2 = 18 \)[/tex].
3. Set Up the Integral:
The area between the curve and the [tex]\( y \)[/tex]-axis from [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex] is given by the definite integral with respect to [tex]\( y \)[/tex]:
[tex]\[ \text{Area} = \int_{2}^{18} \sqrt{\frac{y}{2}} \, dy \][/tex]
4. Evaluate the Integral:
- Simplify the integrand [tex]\( \sqrt{\frac{y}{2}} \)[/tex]:
[tex]\[ \sqrt{\frac{y}{2}} = \frac{1}{\sqrt{2}} \sqrt{y} = \frac{y^{1/2}}{\sqrt{2}} \][/tex]
- The integral becomes:
[tex]\[ \int_{2}^{18} \frac{y^{1/2}}{\sqrt{2}} \, dy \][/tex]
- Find the antiderivative of [tex]\( \frac{y^{1/2}}{\sqrt{2}} \)[/tex]:
[tex]\[ \int \frac{y^{1/2}}{\sqrt{2}} \, dy = \frac{1}{\sqrt{2}} \cdot \frac{2}{3} y^{3/2} = \frac{2}{3\sqrt{2}} y^{3/2} + C \][/tex]
- Apply the limits of integration:
[tex]\[ \text{Area} = \left[ \frac{2}{3\sqrt{2}} y^{3/2} \right]_{2}^{18} \][/tex]
5. Compute the Value:
- Evaluate at [tex]\( y = 18 \)[/tex]:
[tex]\[ \frac{2}{3\sqrt{2}} \cdot (18)^{3/2} \][/tex]
- Evaluate at [tex]\( y = 2 \)[/tex]:
[tex]\[ \frac{2}{3\sqrt{2}} \cdot (2)^{3/2} \][/tex]
- The difference gives the area:
[tex]\[ \text{Area} = 4 \][/tex]
So, the area between the curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( y \)[/tex]-axis, from [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex], is approximately [tex]\( 4.0 \)[/tex] square units.
Thus, the final areas are:
- Part (a): [tex]\( 17.333 \)[/tex] square units.
- Part (b): [tex]\( 4.0 \)[/tex] square units.
### Part (a): Area Between the Curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( x \)[/tex]-axis
We are asked to find the area between [tex]\( y = 2x^2 \)[/tex] and the [tex]\( x \)[/tex]-axis, bounded by the lines [tex]\( x = 1 \)[/tex] and [tex]\( x = 3 \)[/tex].
1. Define the Function and Limits of Integration:
- The function is [tex]\( y = 2x^2 \)[/tex].
- The area is bounded by [tex]\( x = 1 \)[/tex] and [tex]\( x = 3 \)[/tex].
2. Set Up the Integral:
The area under the curve from [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex] is given by the definite integral:
[tex]\[ \text{Area} = \int_{1}^{3} 2x^2 \, dx \][/tex]
3. Evaluate the Integral:
- First, find the antiderivative of [tex]\( 2x^2 \)[/tex]:
[tex]\[ \int 2x^2 \, dx = \frac{2x^3}{3} + C \][/tex]
- Now, apply the limits of integration:
[tex]\[ \text{Area} = \left[ \frac{2x^3}{3} \right]_{1}^{3} \][/tex]
4. Compute the Value:
- Evaluate at [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{2 \cdot 3^3}{3} = \frac{2 \cdot 27}{3} = 18 \][/tex]
- Evaluate at [tex]\( x = 1 \)[/tex]:
[tex]\[ \frac{2 \cdot 1^3}{3} = \frac{2}{3} \][/tex]
- Find the difference:
[tex]\[ \text{Area} = 18 - \frac{2}{3} = \frac{54}{3} - \frac{2}{3} = \frac{52}{3} \approx 17.333333333333332 \][/tex]
So, the area between the curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( x \)[/tex]-axis, from [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex], is approximately [tex]\( 17.33 \)[/tex] square units.
### Part (b): Area Between the Curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( y \)[/tex]-axis
For this part, we need to consider the area between the curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( y \)[/tex]-axis, bounded by the lines at [tex]\( x = 1 \)[/tex] and [tex]\( x = 3 \)[/tex].
1. Convert the Function to Solve for [tex]\( x \)[/tex]:
- The given function is [tex]\( y = 2x^2 \)[/tex].
- Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ x = \sqrt{\frac{y}{2}} \][/tex]
2. Define the Limits of Integration:
- From [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex]:
- At [tex]\( x = 1 \)[/tex], [tex]\( y = 2(1)^2 = 2 \)[/tex].
- At [tex]\( x = 3 \)[/tex], [tex]\( y = 2(3)^2 = 18 \)[/tex].
3. Set Up the Integral:
The area between the curve and the [tex]\( y \)[/tex]-axis from [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex] is given by the definite integral with respect to [tex]\( y \)[/tex]:
[tex]\[ \text{Area} = \int_{2}^{18} \sqrt{\frac{y}{2}} \, dy \][/tex]
4. Evaluate the Integral:
- Simplify the integrand [tex]\( \sqrt{\frac{y}{2}} \)[/tex]:
[tex]\[ \sqrt{\frac{y}{2}} = \frac{1}{\sqrt{2}} \sqrt{y} = \frac{y^{1/2}}{\sqrt{2}} \][/tex]
- The integral becomes:
[tex]\[ \int_{2}^{18} \frac{y^{1/2}}{\sqrt{2}} \, dy \][/tex]
- Find the antiderivative of [tex]\( \frac{y^{1/2}}{\sqrt{2}} \)[/tex]:
[tex]\[ \int \frac{y^{1/2}}{\sqrt{2}} \, dy = \frac{1}{\sqrt{2}} \cdot \frac{2}{3} y^{3/2} = \frac{2}{3\sqrt{2}} y^{3/2} + C \][/tex]
- Apply the limits of integration:
[tex]\[ \text{Area} = \left[ \frac{2}{3\sqrt{2}} y^{3/2} \right]_{2}^{18} \][/tex]
5. Compute the Value:
- Evaluate at [tex]\( y = 18 \)[/tex]:
[tex]\[ \frac{2}{3\sqrt{2}} \cdot (18)^{3/2} \][/tex]
- Evaluate at [tex]\( y = 2 \)[/tex]:
[tex]\[ \frac{2}{3\sqrt{2}} \cdot (2)^{3/2} \][/tex]
- The difference gives the area:
[tex]\[ \text{Area} = 4 \][/tex]
So, the area between the curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( y \)[/tex]-axis, from [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex], is approximately [tex]\( 4.0 \)[/tex] square units.
Thus, the final areas are:
- Part (a): [tex]\( 17.333 \)[/tex] square units.
- Part (b): [tex]\( 4.0 \)[/tex] square units.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.