Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's solve the problem step by step.
### Part (a): Area Between the Curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( x \)[/tex]-axis
We are asked to find the area between [tex]\( y = 2x^2 \)[/tex] and the [tex]\( x \)[/tex]-axis, bounded by the lines [tex]\( x = 1 \)[/tex] and [tex]\( x = 3 \)[/tex].
1. Define the Function and Limits of Integration:
- The function is [tex]\( y = 2x^2 \)[/tex].
- The area is bounded by [tex]\( x = 1 \)[/tex] and [tex]\( x = 3 \)[/tex].
2. Set Up the Integral:
The area under the curve from [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex] is given by the definite integral:
[tex]\[ \text{Area} = \int_{1}^{3} 2x^2 \, dx \][/tex]
3. Evaluate the Integral:
- First, find the antiderivative of [tex]\( 2x^2 \)[/tex]:
[tex]\[ \int 2x^2 \, dx = \frac{2x^3}{3} + C \][/tex]
- Now, apply the limits of integration:
[tex]\[ \text{Area} = \left[ \frac{2x^3}{3} \right]_{1}^{3} \][/tex]
4. Compute the Value:
- Evaluate at [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{2 \cdot 3^3}{3} = \frac{2 \cdot 27}{3} = 18 \][/tex]
- Evaluate at [tex]\( x = 1 \)[/tex]:
[tex]\[ \frac{2 \cdot 1^3}{3} = \frac{2}{3} \][/tex]
- Find the difference:
[tex]\[ \text{Area} = 18 - \frac{2}{3} = \frac{54}{3} - \frac{2}{3} = \frac{52}{3} \approx 17.333333333333332 \][/tex]
So, the area between the curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( x \)[/tex]-axis, from [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex], is approximately [tex]\( 17.33 \)[/tex] square units.
### Part (b): Area Between the Curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( y \)[/tex]-axis
For this part, we need to consider the area between the curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( y \)[/tex]-axis, bounded by the lines at [tex]\( x = 1 \)[/tex] and [tex]\( x = 3 \)[/tex].
1. Convert the Function to Solve for [tex]\( x \)[/tex]:
- The given function is [tex]\( y = 2x^2 \)[/tex].
- Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ x = \sqrt{\frac{y}{2}} \][/tex]
2. Define the Limits of Integration:
- From [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex]:
- At [tex]\( x = 1 \)[/tex], [tex]\( y = 2(1)^2 = 2 \)[/tex].
- At [tex]\( x = 3 \)[/tex], [tex]\( y = 2(3)^2 = 18 \)[/tex].
3. Set Up the Integral:
The area between the curve and the [tex]\( y \)[/tex]-axis from [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex] is given by the definite integral with respect to [tex]\( y \)[/tex]:
[tex]\[ \text{Area} = \int_{2}^{18} \sqrt{\frac{y}{2}} \, dy \][/tex]
4. Evaluate the Integral:
- Simplify the integrand [tex]\( \sqrt{\frac{y}{2}} \)[/tex]:
[tex]\[ \sqrt{\frac{y}{2}} = \frac{1}{\sqrt{2}} \sqrt{y} = \frac{y^{1/2}}{\sqrt{2}} \][/tex]
- The integral becomes:
[tex]\[ \int_{2}^{18} \frac{y^{1/2}}{\sqrt{2}} \, dy \][/tex]
- Find the antiderivative of [tex]\( \frac{y^{1/2}}{\sqrt{2}} \)[/tex]:
[tex]\[ \int \frac{y^{1/2}}{\sqrt{2}} \, dy = \frac{1}{\sqrt{2}} \cdot \frac{2}{3} y^{3/2} = \frac{2}{3\sqrt{2}} y^{3/2} + C \][/tex]
- Apply the limits of integration:
[tex]\[ \text{Area} = \left[ \frac{2}{3\sqrt{2}} y^{3/2} \right]_{2}^{18} \][/tex]
5. Compute the Value:
- Evaluate at [tex]\( y = 18 \)[/tex]:
[tex]\[ \frac{2}{3\sqrt{2}} \cdot (18)^{3/2} \][/tex]
- Evaluate at [tex]\( y = 2 \)[/tex]:
[tex]\[ \frac{2}{3\sqrt{2}} \cdot (2)^{3/2} \][/tex]
- The difference gives the area:
[tex]\[ \text{Area} = 4 \][/tex]
So, the area between the curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( y \)[/tex]-axis, from [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex], is approximately [tex]\( 4.0 \)[/tex] square units.
Thus, the final areas are:
- Part (a): [tex]\( 17.333 \)[/tex] square units.
- Part (b): [tex]\( 4.0 \)[/tex] square units.
### Part (a): Area Between the Curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( x \)[/tex]-axis
We are asked to find the area between [tex]\( y = 2x^2 \)[/tex] and the [tex]\( x \)[/tex]-axis, bounded by the lines [tex]\( x = 1 \)[/tex] and [tex]\( x = 3 \)[/tex].
1. Define the Function and Limits of Integration:
- The function is [tex]\( y = 2x^2 \)[/tex].
- The area is bounded by [tex]\( x = 1 \)[/tex] and [tex]\( x = 3 \)[/tex].
2. Set Up the Integral:
The area under the curve from [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex] is given by the definite integral:
[tex]\[ \text{Area} = \int_{1}^{3} 2x^2 \, dx \][/tex]
3. Evaluate the Integral:
- First, find the antiderivative of [tex]\( 2x^2 \)[/tex]:
[tex]\[ \int 2x^2 \, dx = \frac{2x^3}{3} + C \][/tex]
- Now, apply the limits of integration:
[tex]\[ \text{Area} = \left[ \frac{2x^3}{3} \right]_{1}^{3} \][/tex]
4. Compute the Value:
- Evaluate at [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{2 \cdot 3^3}{3} = \frac{2 \cdot 27}{3} = 18 \][/tex]
- Evaluate at [tex]\( x = 1 \)[/tex]:
[tex]\[ \frac{2 \cdot 1^3}{3} = \frac{2}{3} \][/tex]
- Find the difference:
[tex]\[ \text{Area} = 18 - \frac{2}{3} = \frac{54}{3} - \frac{2}{3} = \frac{52}{3} \approx 17.333333333333332 \][/tex]
So, the area between the curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( x \)[/tex]-axis, from [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex], is approximately [tex]\( 17.33 \)[/tex] square units.
### Part (b): Area Between the Curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( y \)[/tex]-axis
For this part, we need to consider the area between the curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( y \)[/tex]-axis, bounded by the lines at [tex]\( x = 1 \)[/tex] and [tex]\( x = 3 \)[/tex].
1. Convert the Function to Solve for [tex]\( x \)[/tex]:
- The given function is [tex]\( y = 2x^2 \)[/tex].
- Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ x = \sqrt{\frac{y}{2}} \][/tex]
2. Define the Limits of Integration:
- From [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex]:
- At [tex]\( x = 1 \)[/tex], [tex]\( y = 2(1)^2 = 2 \)[/tex].
- At [tex]\( x = 3 \)[/tex], [tex]\( y = 2(3)^2 = 18 \)[/tex].
3. Set Up the Integral:
The area between the curve and the [tex]\( y \)[/tex]-axis from [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex] is given by the definite integral with respect to [tex]\( y \)[/tex]:
[tex]\[ \text{Area} = \int_{2}^{18} \sqrt{\frac{y}{2}} \, dy \][/tex]
4. Evaluate the Integral:
- Simplify the integrand [tex]\( \sqrt{\frac{y}{2}} \)[/tex]:
[tex]\[ \sqrt{\frac{y}{2}} = \frac{1}{\sqrt{2}} \sqrt{y} = \frac{y^{1/2}}{\sqrt{2}} \][/tex]
- The integral becomes:
[tex]\[ \int_{2}^{18} \frac{y^{1/2}}{\sqrt{2}} \, dy \][/tex]
- Find the antiderivative of [tex]\( \frac{y^{1/2}}{\sqrt{2}} \)[/tex]:
[tex]\[ \int \frac{y^{1/2}}{\sqrt{2}} \, dy = \frac{1}{\sqrt{2}} \cdot \frac{2}{3} y^{3/2} = \frac{2}{3\sqrt{2}} y^{3/2} + C \][/tex]
- Apply the limits of integration:
[tex]\[ \text{Area} = \left[ \frac{2}{3\sqrt{2}} y^{3/2} \right]_{2}^{18} \][/tex]
5. Compute the Value:
- Evaluate at [tex]\( y = 18 \)[/tex]:
[tex]\[ \frac{2}{3\sqrt{2}} \cdot (18)^{3/2} \][/tex]
- Evaluate at [tex]\( y = 2 \)[/tex]:
[tex]\[ \frac{2}{3\sqrt{2}} \cdot (2)^{3/2} \][/tex]
- The difference gives the area:
[tex]\[ \text{Area} = 4 \][/tex]
So, the area between the curve [tex]\( y = 2x^2 \)[/tex] and the [tex]\( y \)[/tex]-axis, from [tex]\( x = 1 \)[/tex] to [tex]\( x = 3 \)[/tex], is approximately [tex]\( 4.0 \)[/tex] square units.
Thus, the final areas are:
- Part (a): [tex]\( 17.333 \)[/tex] square units.
- Part (b): [tex]\( 4.0 \)[/tex] square units.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.