Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To identify the correct justification for step 3 in the solution process, let's analyze each step in detail:
1. We start with the equation:
[tex]\[ 10d - 5 = 4d - 15 - 3d \][/tex]
2. Combine like terms on the right-hand side:
[tex]\[ 10d - 5 = (4d - 3d) - 15 \][/tex]
[tex]\[ 10d - 5 = d - 15 \][/tex]
This is Step 1.
3. To isolate the variable [tex]\(d\)[/tex], subtract [tex]\(d\)[/tex] from both sides:
[tex]\[ 10d - 5 - d = -15 \][/tex]
[tex]\[ 9d - 5 = -15 \][/tex]
This is Step 2.
4. Now, we need to isolate [tex]\(d\)[/tex]. Add 5 to both sides of the equation:
[tex]\[ 9d - 5 + 5 = -15 + 5 \][/tex]
[tex]\[ 9d = -10 \][/tex]
This is Step 3.
The operation performed in Step 3 is the addition of 5 to both sides of the equation to isolate the term involving [tex]\(d\)[/tex]. This is an application of the addition property of equality.
Therefore, the correct justification for Step 3 is:
[tex]\[ \boxed{\text{C. the addition property of equality}} \][/tex]
1. We start with the equation:
[tex]\[ 10d - 5 = 4d - 15 - 3d \][/tex]
2. Combine like terms on the right-hand side:
[tex]\[ 10d - 5 = (4d - 3d) - 15 \][/tex]
[tex]\[ 10d - 5 = d - 15 \][/tex]
This is Step 1.
3. To isolate the variable [tex]\(d\)[/tex], subtract [tex]\(d\)[/tex] from both sides:
[tex]\[ 10d - 5 - d = -15 \][/tex]
[tex]\[ 9d - 5 = -15 \][/tex]
This is Step 2.
4. Now, we need to isolate [tex]\(d\)[/tex]. Add 5 to both sides of the equation:
[tex]\[ 9d - 5 + 5 = -15 + 5 \][/tex]
[tex]\[ 9d = -10 \][/tex]
This is Step 3.
The operation performed in Step 3 is the addition of 5 to both sides of the equation to isolate the term involving [tex]\(d\)[/tex]. This is an application of the addition property of equality.
Therefore, the correct justification for Step 3 is:
[tex]\[ \boxed{\text{C. the addition property of equality}} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.