Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Find the next three terms of the sequence 80, –160, 320, –640

Sagot :

You times by -2 1280 -2560 5120

Answer:

For a geometric sequence

[tex]a_1, a_2, a_3, a_4,..[/tex]

The nth term for this sequence is given by:

[tex]a_n = a_1r^{n-1}[/tex]        .....[1]

where

[tex]a_1[/tex] is the first term

r is the common ratio

n is the number of terms.

Given the sequence:

80, -160, 320, -640

[tex]a_1 = 80[/tex]

[tex]a_2 = -160[/tex]

[tex]a_3 = 320[/tex]

[tex]a_4= -640[/tex]

Common ratio(r) is -2

Since,

[tex]r = \frac{a_2}{a_1}=\frac{a_3}{a_2}=\frac{a_4}{a_3}[/tex]

Substitute the values we have;

[tex]r = \frac{-160}{80}= \frac{320}{-160}=\frac{-640}{320} = -2[/tex]

We have to find the next three term of the given sequence:

Using [1] we have

[tex]a_5 = a_1 \cdot r^4[/tex]

Substitute the given values we have;

[tex]a_5 =80 \cdot (-2)^4 = 80 \cdot 16= 1280[/tex]

Similarly,

[tex]a_6 =80 \cdot (-2)^5= 80 \cdot -32=-2560[/tex]

[tex]a_7 =80 \cdot (-2)^6 = 80 \cdot 16 =5120[/tex]

Therefore, next three terms in the given sequence are: 1280, -2560, 5120

We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.