Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Use the Equation of Clapeyron:
[tex]\frac{P_1.V_1}{T_1}=\frac{P_2.V_2}{T_2}\\ \\ \frac{0.5V_1}{235}=\frac{1.2*48}{320}\\ \\ 320*0.5V_1=235*1.2*48\\ \\ V_1=\frac{235*1.2*48}{320*0.5}=84.5 liters[/tex]
[tex]\frac{P_1.V_1}{T_1}=\frac{P_2.V_2}{T_2}\\ \\ \frac{0.5V_1}{235}=\frac{1.2*48}{320}\\ \\ 320*0.5V_1=235*1.2*48\\ \\ V_1=\frac{235*1.2*48}{320*0.5}=84.5 liters[/tex]
The initial volume of the gas is 117L.
What is volume?
Volume is the amount of space the matter occupies.
What do you mean by combined gas law?
- The combined gas law combines the three gas laws: Boyle's Law, Charles' Law, and Gay-Lussac's Law.
- It states that the ratio of the product of pressure and volume and the absolute temperature of a gas is equal to a constant.
- When Avogadro's law is added to the combined gas law, the ideal gas law results.
- It is a combination of the other gas laws that works when everything except temperature, pressure, and volume are kept constant.
- There are a couple of common equations for writing the combined gas law. The classic law relates Boyle's law and Charles' law to state:
PV/T = k
where P = pressure, V = volume, T = absolute temperature in K and k= constant.
- Another common formula for the combined gas law relates before and after conditions of a gas:
P1V1 / T1 = P2V2 / T2
Where P1 and P2 = initial and final pressure in atm
T1 and T2 = Initial and final temperature in K
V1 and V2 = initial and final volume in L
Using combined gas law:
P1V1/T1 = P2V2/T2
Given:
P1 = 0.5 atm
T1 = 325K
P2 = 1.2 atm
V2 = 48L
T2 = 320K
Assuming that the number of moles are constant for both conditions:
(P1 x V1)/T1 = (P2 x V2)/T2
Substituting the given values,
(0.5 x V1)/325 = (1.2 x 48)/320K
Solving for V1
V1 = (1.2atm x 48L x 325K)/ (320Kx 0.5 atm)
V1 = 117L
Hence, the initial volume of the gas is 117L.
To learn more about combined gas law here
https://brainly.com/question/57595
#SPJ2
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.