Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
[tex]K=\$10,000\ \ \ and\ \ \ Sum=K\cdot(1+ \frac{p}{100})^n\\----------------------- \\1)\ \ \ 7\%\ quarterly\\\\ \ \Rightarrow\ \ \frac{1}{4} \cdot7\% =1.75\%\ \ annually\ \ \Rightarrow\ \ p=1.75\\\\ quarterly\ \Rightarrow\ \ 4\ times\ annually\ \Rightarrow\ \ 16\ times\ in\ 4\ years\ \Rightarrow\ \ n=16\\\\Sum(7\%)=\$10,000\cdot(1+ \frac{1.75}{100})^{16}=\\ \\.\ \ \ \ \ \ \ \ \ \ \ \ =\$10,000\cdot(1+0,0175)^{16}\approx\$13199.29\\------------------------\\[/tex]
[tex]2)\ \ \ 6.94\%\ daily\\\\ \ \Rightarrow\ \ \frac{1}{365} \cdot6.94\% \approx0.019\%\ \ annually\ \ \Rightarrow\ \ p=0.019\\\\ daily\ \Rightarrow\ 365\ times\ annually\ \Rightarrow\ 1420\ times\ in\ 4\ years\ \Rightarrow\ n=1420\\\\Sum(6.94\%)=\$10,000\cdot(1+ \frac{0.019}{100})^{1420}=\\ \\.\ \ \ \ \ \ \ \ \ \ \ \ =\$10,000\cdot(1+0,00019)^{1420}\approx\$13096.69\\---------------------------\\\$13,199.29 > \$13,096.69\\\\Ans.\ the\ larger\ amount\ gives\ the\ compounded\ quarterly.[/tex]
[tex]2)\ \ \ 6.94\%\ daily\\\\ \ \Rightarrow\ \ \frac{1}{365} \cdot6.94\% \approx0.019\%\ \ annually\ \ \Rightarrow\ \ p=0.019\\\\ daily\ \Rightarrow\ 365\ times\ annually\ \Rightarrow\ 1420\ times\ in\ 4\ years\ \Rightarrow\ n=1420\\\\Sum(6.94\%)=\$10,000\cdot(1+ \frac{0.019}{100})^{1420}=\\ \\.\ \ \ \ \ \ \ \ \ \ \ \ =\$10,000\cdot(1+0,00019)^{1420}\approx\$13096.69\\---------------------------\\\$13,199.29 > \$13,096.69\\\\Ans.\ the\ larger\ amount\ gives\ the\ compounded\ quarterly.[/tex]
7% compounded quarterly > 6.94% compounded continuously.
What is compound interest?
Interest earned on the principal amount and the interest itself is known as compound interest. These increases exponentially.
How to solve?
1) 7% compounded quarterly
[tex]\frac{7}{4}% = 1.75%[/tex] %= 1.75% annually
quarterly for 4 years => 4*4 = 16 times
Accumulated value = present value * [tex](1+\frac{r}{100})}^n[/tex]
where present value = $10,000 , r = 1.75, n = 16 times
substituting values:
AV = [tex]10000*{(1+\frac{1.75}{100})}^{16} = $13199.295[/tex]
Thus, the value of $10,000 after 4 years at 7% compounded quarterly is $13199.295
2) 6.94% compounded continuously
[tex]\frac{6.94}{365}[/tex]% = 0.01904% per annum
365 days for 4 years => 365*4 = 1460 times
Accumulated value = present value * [tex](1+\frac{r}{100})}^n[/tex]
Where present value = $10,000, r = 0.019014 , n = 1460 times
Substituting values:
[tex]10000*{(1+\frac{0.019014}{100})}^{1460} = $ 13199.29085[/tex]
Thus, the value of $10,000 after 4 years at % compounded quarterly is $13199.29085
since $13199.295 > $13199.29085
Both values are approximately the same but the value of 7% compounded quarterly is comparatively more than 6.94% compounded continuously.
Formula used:
Accumulated value = present value * [tex](1+\frac{r}{100})}^n[/tex]
TO learn more about Interest rates visit:
https://brainly.com/question/27118582
#SPJ2
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.