Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
[tex]4x^2+9y^2=36\\
\\
\frac{4x^2}{36}+\frac{9y^2}{36}=\frac{36}{36}\\
\\
\boxed{\frac{x^2}{9}+\frac{y^2}{4}=1}[/tex]
This is a equation of a ellipse (0,0) centered
Domais: {x∈R/-3≤x≤3}
Range:{y∈R/-2≤y≤2}
This is a equation of a ellipse (0,0) centered
Domais: {x∈R/-3≤x≤3}
Range:{y∈R/-2≤y≤2}
Answer:
Ellipse
Domain:[-3,3]
Range:[-2,2]
Step-by-step explanation:
We are given that an equation
[tex]4x^2+9y^2=36[/tex]
We have to find the type of conic section and find the domain and range of conic section.
Divide by 36 on both sides then, we get
[tex]\frac{x^2}{9}+\frac{y^2}{4}=1[/tex]
[tex]\frac{x^2}{3^2}+\frac{y^2}{2^2}=1[/tex]
It is an equation of ellipse.
Substitute y=0 then , we get
[tex]\frac{x^2}{9}=1[/tex]
[tex]x^2=9[/tex]
[tex]x=\pm 3[/tex]
Domain :[-3,3]
Substitute x=0 then we get
[tex]\frac{y^2}{4}=1[/tex]
[tex]y^2=4[/tex]
[tex]y=\pm 2[/tex]
Range=[-2,2]

Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.