Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
[tex]4x^2+9y^2=36\\
\\
\frac{4x^2}{36}+\frac{9y^2}{36}=\frac{36}{36}\\
\\
\boxed{\frac{x^2}{9}+\frac{y^2}{4}=1}[/tex]
This is a equation of a ellipse (0,0) centered
Domais: {x∈R/-3≤x≤3}
Range:{y∈R/-2≤y≤2}
This is a equation of a ellipse (0,0) centered
Domais: {x∈R/-3≤x≤3}
Range:{y∈R/-2≤y≤2}
Answer:
Ellipse
Domain:[-3,3]
Range:[-2,2]
Step-by-step explanation:
We are given that an equation
[tex]4x^2+9y^2=36[/tex]
We have to find the type of conic section and find the domain and range of conic section.
Divide by 36 on both sides then, we get
[tex]\frac{x^2}{9}+\frac{y^2}{4}=1[/tex]
[tex]\frac{x^2}{3^2}+\frac{y^2}{2^2}=1[/tex]
It is an equation of ellipse.
Substitute y=0 then , we get
[tex]\frac{x^2}{9}=1[/tex]
[tex]x^2=9[/tex]
[tex]x=\pm 3[/tex]
Domain :[-3,3]
Substitute x=0 then we get
[tex]\frac{y^2}{4}=1[/tex]
[tex]y^2=4[/tex]
[tex]y=\pm 2[/tex]
Range=[-2,2]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.