Answered

Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

 Can you solve 2^x=e^(x+2)

Sagot :

AL2006
Answer: Yes, I can.


Although you haven't asked for the solution, here it is anyway:

2^x = e^(x+2)

x ln(2) = x+2

x ln(2) - x = 2

x [ ln(2) - 1 ] = 2

x = 2 / [ ln(2) - 1 ]

x = 2 / -0.3069... = - 6.518... (rounded) 

Ryan2
[tex]2^x=e^{x+2}\\ \\ ln(2^x)=ln(e^{x+2})\\ \\ xln(2)=(x+2)ln(e)\\ \\ xln(2)=x+2\\ \\ \frac{x+2}{x}=ln(2)\\ \\ \frac{x}{x}+\frac{2}{x}=ln(2)\\ \\ 1+\frac{2}{x}=ln(2)\\ \\ \frac{2}{x}=ln(2)-1\\ \\ \boxed{x=\frac{2}{ln(2)-1}}[/tex]