Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer: Yes, I can.
Although you haven't asked for the solution, here it is anyway:
2^x = e^(x+2)
x ln(2) = x+2
x ln(2) - x = 2
x [ ln(2) - 1 ] = 2
x = 2 / [ ln(2) - 1 ]
x = 2 / -0.3069... = - 6.518... (rounded)
Although you haven't asked for the solution, here it is anyway:
2^x = e^(x+2)
x ln(2) = x+2
x ln(2) - x = 2
x [ ln(2) - 1 ] = 2
x = 2 / [ ln(2) - 1 ]
x = 2 / -0.3069... = - 6.518... (rounded)
[tex]2^x=e^{x+2}\\
\\
ln(2^x)=ln(e^{x+2})\\
\\
xln(2)=(x+2)ln(e)\\
\\
xln(2)=x+2\\
\\
\frac{x+2}{x}=ln(2)\\
\\
\frac{x}{x}+\frac{2}{x}=ln(2)\\
\\
1+\frac{2}{x}=ln(2)\\
\\
\frac{2}{x}=ln(2)-1\\
\\
\boxed{x=\frac{2}{ln(2)-1}}[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.