Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

find the remaining zero x^3-6x^2+36x-218 zero:-6i


Sagot :

[tex] x^3-6x^2+36x-216=x^2(x-6)+36(x-6)=(x-6)(x^2+36)=\\\\=(x-6)[x^2-36\cdot i^2)=(x-6)(x-6i)(x+6i)\\\\(x-6)(x-6i)(x+6i)=0\\\\\Leftrightarrow\ \ \ x-6=0\ \ \ \ or\ \ \ \ x-6i=0\ \ \ \ or\ \ \ \ x+6i=0\\\\.\ \ \ \ \ \ x=6\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x=6i\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x=-6i[/tex]
AL2006
I know this isn't fair, but I happen to know that imaginary or complex roots always
occur in conjugate pairs.  So if -6i is a root, then +6i also must be one.

The expression also has one real root.

It's between 6.02765006 and 6.02765007 .

The reason for that is probably a mis-type or mis-copy in the question.
The ' 218 ' at the end was probably supposed to be ' 216 '.  In that case,
the real root would have been exactly ' 6 '.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.