Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

how many solution exist for each system of equations?

3x-3y=-6

y=x+2



Sagot :

AL2006
The second one is already in slope-intercept form.
We need to do a little work on the first one.

3x - 3y = -6

Subtract 3x from each side:

-3y = -3x - 6

Divide each side by -3 :

y = x + 2

That's the first equation. But when you unravel it like this, you find that
it's exactly the same as the second equation. Both of them represent
the same straight line on a graph.  If you graphed both of them, you'd
only see one line !

The 'solution' of a pair of equations is the point on a graph where their
lines cross.  There's no such point here, because each and every point
of the first equation is also a point of the second one. 

This pair (system) of equations has no solution.

Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.