At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
The whole story begins at 9:00 AM, so let's make up a quantity called ' T ',
and that'll be the number of hours after 9:00 AM. When we find out what ' T ' is,
we'll just count off that many hours after 9:00 AM and we'll have the answer.
-- The first car started out at 9:00 AM, and drove until the other one caught up
with him. So the first car drove for ' T ' hours.
The first car drove at 55 mph, so he covered ' 55T ' miles.
-- The second car started out 1 hour later, so he only drove for (T - 1) hours.
The second car drove at 75 mph, so he covered ' 75(T - 1) ' miles.
But they both left from the same shop, and they both met at the same place.
So they both traveled the same distance.
(Miles of Car-#1) = (miles of Car-#2)
55 T = 75 (T - 1)
Eliminate the parentheses on the right side"
55 T = 75 T - 75
Add 75 to each side:
55 T + 75 = 75 T
Subtract 55 T from each side:
75 = 20 T
Divide each side by 20 :
75/20 = T
3.75 = T
There you have it. They met 3.75 hours after 9:00 AM.
9:00 AM + 3.75 hours = 12:45 PM . . . just in time to stop for lunch together.
Also by the way ...
when the 2nd car caught up, they were 206.25 miles from the shop.
and that'll be the number of hours after 9:00 AM. When we find out what ' T ' is,
we'll just count off that many hours after 9:00 AM and we'll have the answer.
-- The first car started out at 9:00 AM, and drove until the other one caught up
with him. So the first car drove for ' T ' hours.
The first car drove at 55 mph, so he covered ' 55T ' miles.
-- The second car started out 1 hour later, so he only drove for (T - 1) hours.
The second car drove at 75 mph, so he covered ' 75(T - 1) ' miles.
But they both left from the same shop, and they both met at the same place.
So they both traveled the same distance.
(Miles of Car-#1) = (miles of Car-#2)
55 T = 75 (T - 1)
Eliminate the parentheses on the right side"
55 T = 75 T - 75
Add 75 to each side:
55 T + 75 = 75 T
Subtract 55 T from each side:
75 = 20 T
Divide each side by 20 :
75/20 = T
3.75 = T
There you have it. They met 3.75 hours after 9:00 AM.
9:00 AM + 3.75 hours = 12:45 PM . . . just in time to stop for lunch together.
Also by the way ...
when the 2nd car caught up, they were 206.25 miles from the shop.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.