Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
[tex]x^3+6x^2+5x-12=x^3-x^2+7x^2-7x+12x-12=\\\\=x^2(x-1)+7x(x-1)+12(x-1)=(x-1)(x^2+7x+12)=\\\\=(x-1)(x^2+3x+4x+12)=(x-1)[x(x+3)+4(x+3)]=\\\\=(x-1)(x+3)(x+4)[/tex]
x³ + 6x² + 5x - 12
= x³ - x² + 7x² + 12x - 12
If we add all the coefficients, we get that the answer is 0. Thus, (x-1) is a factor of polynomial.
= x²(x-1) + 7x(x-1) + 12(x-1)
on re-arranging (x-1) as a common factor ;
= (x-1)(x²+7x+12) .........................................(1)
Now, we factorize (x² + 7x + 12)
(x² + 7x + 12)
= x² + 3x + 4x + 12
= x(x + 3) + 4(x + 3)
= (x + 4)( x +3) ..........................................(2)
On substituting for p(x) in 1 and 2, we get
(px) = (x-1)(x+4)(x+3)
= x³ - x² + 7x² + 12x - 12
If we add all the coefficients, we get that the answer is 0. Thus, (x-1) is a factor of polynomial.
= x²(x-1) + 7x(x-1) + 12(x-1)
on re-arranging (x-1) as a common factor ;
= (x-1)(x²+7x+12) .........................................(1)
Now, we factorize (x² + 7x + 12)
(x² + 7x + 12)
= x² + 3x + 4x + 12
= x(x + 3) + 4(x + 3)
= (x + 4)( x +3) ..........................................(2)
On substituting for p(x) in 1 and 2, we get
(px) = (x-1)(x+4)(x+3)
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.