Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Delta = 25 - 16 = 9 => [tex] \sqrt{Delta} = 3;[/tex]
[tex] x_{1} = (-5 + 3)/4 = -1/2 and x_{2} = (-5 -3)/4 = -2;[/tex];
=> 2[tex] x^{2} + 5x + 2 = 2(x+1/2)(x+2).[/tex] = (2x+1)(x+2).
[tex] x_{1} = (-5 + 3)/4 = -1/2 and x_{2} = (-5 -3)/4 = -2;[/tex];
=> 2[tex] x^{2} + 5x + 2 = 2(x+1/2)(x+2).[/tex] = (2x+1)(x+2).
Answer:
(x + 2)(2x + 1)
Step-by-step explanation:
Hello!
We can factor this expression using the grouping method.
What is the Grouping Method?
The grouping method is a way to factor quadratic expressions and is mostly likely used when given an even number of terms. I will show you how to factor by grouping shortly.
Step 1: AC and B
This equation is written in the standard form of a quadratic : ax² + bx + c
The rule of grouping is that we need to find two factors, so that when the terms ax² and c are multipliedd together, the two factors would add to bx.
Using the given problem:
- ax² is 2x²
- bx is 5x
- c is 2
Multiply:
- 2(2x²)
- 4x²
That means that the two factors that multiply to 4x² should add to 5x. The terms that work is x and 4x.
Step 2: Expand and factor
Now we simply replace 4x and x for 5x.
- 2x² + x + 4x + 2
Now think of these one expressions as two seperate ones.
- (2x² + x) + (4x + 2)
Find the GCF in both parenthesis
- x(2x + 1) + 2(2x + 1)
Simplify
- (x + 2)(2x + 1)
Your factored equation is (x + 2)(2x + 1)
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.