Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

A toy rocket is shot vertically into the air from a launching pad 5 feel above the ground with an initial velocity of 80 feet per second. The height h, in feet, of the rocket above the ground as t seconds after launch is given by the function h(t)=-16t^2+80t+5. How long will it take the rocket to reach its maximum height? What is the maximum height?

CAN ANYONE HELP ME ASAP!!!!
Thank you in advance


Sagot :

[tex]h(t)=-16t^2+80t+5\\\\t_{max}-time\ for\ a\ maximum\ height\\\\t_{max}=- \frac{80}{2\cdot(-16)} = \frac{80}{32} =2.5\ [s]\\\\h_{max}-the\ maximum\ height\ above\ the\ ground\\\\h_{max}=h(2.5)=-16\cdot2.5^2+80\cdot2.5+5=-16\cdot6.25+200+5=\\.\ \ \ \ \ \ =-100+205=105\\\\h_{max\ rocket}-the\ maximum\ height\ of\ a\ toy\ rocket\\\\h_{max\ rocket}=105-5=100\ [ft]\\\\Ans.\ t_{max}=2.5\ second,\ \ h_{max\ rocket}=100\ feet.[/tex]

For this case we have the following function:

[tex] h (t) = - 16t ^ 2 + 80t + 5
[/tex]

To find the time when it reaches its maximum height, what we must do is to derive the function.

We have then:

[tex] h '(t) = - 32t + 80
[/tex]

We set zero and clear the time:

[tex] -32t + 80 = 0

32t = 80
[/tex]

[tex] t =\frac{80}{32}

t = 2.5 s
[/tex]

Then, we evaluate the time obtained for the function of the height.

We have then:

[tex] h (2.5) = - 16 * (2.5) ^ 2 + 80 * (2.5) +5

h (2.5) = 105 feet
[/tex]

Answer:

It will take the rocket to reach its maximum height:

[tex] t = 2.5 s
[/tex]

the maximum height is:

[tex] h (2.5) = 105 feet [/tex]

Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.