snooki
Answered

Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

The widths of two similar rectangles are 16 cm and 14 cm. What is the ratio of their perimeters? Of their areas?
a.
8:7 and 64:49
b.
9:8 and 64:49
c.
8 and 81-64
d.
8:7 and 81:64


Sagot :

[tex]\frac{16}{14}=\frac{8}{7}=8:7-ratio\ of\ perimeters\\\\8^2:7^2=64:49-ratio\ of\ areas\\\\Answer:A.[/tex]

Answer:

A


Step-by-step explanation:

Two lengths of similar figures relates by the scale factor [tex]k[/tex].

Two areas of similar figures relates by the scale factor [tex]k^{2}[/tex].


  • If length of one figure is A, and corresponding length of another figure is B, then they are related by:

[tex]A=kB[/tex]

  • If area of one figure is A, and corresponding Area of another figure is B, then they are related by:

[tex]A=k^{2}B[/tex]


So we can write:

[tex]16=k(14)\\k=\frac{16}{14}=\frac{8}{7}[/tex]


Since, perimeter is also length, the ratio would be [tex]\frac{8}{7}[/tex]

Similarly, ratio of their areas should be [tex]\frac{8^2}{7^2}=\frac{64}{49}[/tex]

Answer choice A is right.

Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.