Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
for the first equation don't let the cube trip you up. simply factor out 5x because 5 goes into all three numbers evenly as does the x. so now your equation reads 5x(x²+6x+9)=0. now factor x²+6x+9 like you normally would. now you should have 3 possible roots. 5x=0, x+3=0, and x+3=0. once you solve for x you should have x=0 and x=-3.
for the second one its a little trickier. we cant factor out the way we did in number one so you try to get all the x's to one side. ⇒ x^4-4x²=-3. now you can factor x² out to get x²(x²-4)=-3. now solve for x!! x²=-3 and x²-4=-3. you get x=√-3, x=1 and x=-1
for the last one your going to solve the original version of the problem (2x-5=11) and the negated version of the problem. (-2x+5=11) all you're doing is solving for x. you should get x=-3 and x=8
for the second one its a little trickier. we cant factor out the way we did in number one so you try to get all the x's to one side. ⇒ x^4-4x²=-3. now you can factor x² out to get x²(x²-4)=-3. now solve for x!! x²=-3 and x²-4=-3. you get x=√-3, x=1 and x=-1
for the last one your going to solve the original version of the problem (2x-5=11) and the negated version of the problem. (-2x+5=11) all you're doing is solving for x. you should get x=-3 and x=8
[tex]5x^3+30x^2+45x=0 \\
x^3+6x^2+9x=0\\
x(x^2+6x+9)=0\\
x(x+3)^2=0\\
x=0 \vee x=-3\\\\
x^4-4x^2+3=0\\
x^4-x^2-3x^2+3=0\\
x^2(x^2-1)-3(x^2-1)=0\\
(x^2-3)(x^2-1)=0\\
(x^2-3)(x-1)(x+1)=0\\
x=-\sqrt3 \vee x=\sqrt 3 \vee x=1 \vee x=-1[/tex]
[tex]|2x-5|=11\\ 2x-5=11 \vee 2x-5=-11\ 2x=16 \vee 2x=-6\\ x=8 \vee x=-3[/tex]
[tex]|2x-5|=11\\ 2x-5=11 \vee 2x-5=-11\ 2x=16 \vee 2x=-6\\ x=8 \vee x=-3[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.