Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
for the first equation don't let the cube trip you up. simply factor out 5x because 5 goes into all three numbers evenly as does the x. so now your equation reads 5x(x²+6x+9)=0. now factor x²+6x+9 like you normally would. now you should have 3 possible roots. 5x=0, x+3=0, and x+3=0. once you solve for x you should have x=0 and x=-3.
for the second one its a little trickier. we cant factor out the way we did in number one so you try to get all the x's to one side. ⇒ x^4-4x²=-3. now you can factor x² out to get x²(x²-4)=-3. now solve for x!! x²=-3 and x²-4=-3. you get x=√-3, x=1 and x=-1
for the last one your going to solve the original version of the problem (2x-5=11) and the negated version of the problem. (-2x+5=11) all you're doing is solving for x. you should get x=-3 and x=8
for the second one its a little trickier. we cant factor out the way we did in number one so you try to get all the x's to one side. ⇒ x^4-4x²=-3. now you can factor x² out to get x²(x²-4)=-3. now solve for x!! x²=-3 and x²-4=-3. you get x=√-3, x=1 and x=-1
for the last one your going to solve the original version of the problem (2x-5=11) and the negated version of the problem. (-2x+5=11) all you're doing is solving for x. you should get x=-3 and x=8
[tex]5x^3+30x^2+45x=0 \\
x^3+6x^2+9x=0\\
x(x^2+6x+9)=0\\
x(x+3)^2=0\\
x=0 \vee x=-3\\\\
x^4-4x^2+3=0\\
x^4-x^2-3x^2+3=0\\
x^2(x^2-1)-3(x^2-1)=0\\
(x^2-3)(x^2-1)=0\\
(x^2-3)(x-1)(x+1)=0\\
x=-\sqrt3 \vee x=\sqrt 3 \vee x=1 \vee x=-1[/tex]
[tex]|2x-5|=11\\ 2x-5=11 \vee 2x-5=-11\ 2x=16 \vee 2x=-6\\ x=8 \vee x=-3[/tex]
[tex]|2x-5|=11\\ 2x-5=11 \vee 2x-5=-11\ 2x=16 \vee 2x=-6\\ x=8 \vee x=-3[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.