Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Find the solutions to the given trig equation for 0 < x < 2π: tanx(cosx)=cosx

Sagot :

AL2006
If tan(x)·cos(x) = cos(x),

then tan(x) = cos(x) / cos(x) = 1

The angles whose tangent is ' 1 ' are 45° and 225° .
[tex]0 \leq x\leq2\pi\ and\ x\neq\frac{\pi}{2}\ and\ x\neq\frac{3\pi}{2}\\\\tanx\cdot cosx=cosx\\\\tanx\cdot cosx-cosx=0\\\\cosx(tanx-1)=0\iff cosx=0\ \vee\ tanx=1\\\\x=\frac{\pi}{2}\notin D\ \vee\ x=\frac{3\pi}{2}\notin D\ \vee\ x=\frac{\pi}{4}\in D\ \vee\ x=\frac{5\pi}{4}\in D[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.