At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Well, their speeds are ([tex]V_1[/tex] is Jack's speed, and [tex]V_2[/tex] is Richard's.
[tex]V_1 = \frac{1}{5} houses/day \\ V_2 = \frac{1}{7} houses/day \\ V = V_1 + V_2 = \frac{1}{5}+\frac{1}{7} = \frac{7+5}{35} = \frac{12}{35}[/tex]
They, together, can paint 12 houses in 35 days. To get a single house, we only have to calculate [tex]\frac{35}{12}[/tex] which is very close to 3 (a bit below)
[tex]V_1 = \frac{1}{5} houses/day \\ V_2 = \frac{1}{7} houses/day \\ V = V_1 + V_2 = \frac{1}{5}+\frac{1}{7} = \frac{7+5}{35} = \frac{12}{35}[/tex]
They, together, can paint 12 houses in 35 days. To get a single house, we only have to calculate [tex]\frac{35}{12}[/tex] which is very close to 3 (a bit below)
Answer:
In 7*5 = 35 days, Jack can paint 7 houses.
In 5*7 = 35 days, Richard can paint 5 houses.
So in 35 days, the two of them can paint 12 houses. To paint just one house, they'll need 1/12 the time, or 35/12 = 2 11/12 days.
Step-by-step explanation:
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.