Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Question
Sin α . Cos α . Tan α = (1 – Cos α) (1 + Cos α)
Answer
Left side = Sin β . Tan β + Cos β
= Sin β . Sin β / Cos β + Cos β
= Sin² β / Cos β + Cos² β / Cos β
= 1 / Cos β = Sec β = Right side proven
Sin α . Cos α . Tan α = (1 – Cos α) (1 + Cos α)
Answer
Left side = Sin β . Tan β + Cos β
= Sin β . Sin β / Cos β + Cos β
= Sin² β / Cos β + Cos² β / Cos β
= 1 / Cos β = Sec β = Right side proven
Let's work on the left side first. And remember that
the tangent is the same as sin/cos.
sin(a) cos(a) tan(a)
Substitute for the tangent:
[ sin(a) cos(a) ] [ sin(a)/cos(a) ]
Cancel the cos(a) from the top and bottom, and you're left with
[ sin(a) ] . . . . . [ sin(a) ] which is [ sin²(a) ] That's the left side.
Now, work on the right side:
[ 1 - cos(a) ] [ 1 + cos(a) ]
Multiply that all out, using FOIL:
[ 1 + cos(a) - cos(a) - cos²(a) ]
= [ 1 - cos²(a) ] That's the right side.
Do you remember that for any angle, sin²(b) + cos²(b) = 1 ?
Subtract cos²(b) from each side, and you have sin²(b) = 1 - cos²(b) for any angle.
So, on the right side, you could write [ sin²(a) ] .
Now look back about 9 lines, and compare that to the result we got for the left side .
They look quite similar. In fact, they're identical. And so the identity is proven.
Whew !
the tangent is the same as sin/cos.
sin(a) cos(a) tan(a)
Substitute for the tangent:
[ sin(a) cos(a) ] [ sin(a)/cos(a) ]
Cancel the cos(a) from the top and bottom, and you're left with
[ sin(a) ] . . . . . [ sin(a) ] which is [ sin²(a) ] That's the left side.
Now, work on the right side:
[ 1 - cos(a) ] [ 1 + cos(a) ]
Multiply that all out, using FOIL:
[ 1 + cos(a) - cos(a) - cos²(a) ]
= [ 1 - cos²(a) ] That's the right side.
Do you remember that for any angle, sin²(b) + cos²(b) = 1 ?
Subtract cos²(b) from each side, and you have sin²(b) = 1 - cos²(b) for any angle.
So, on the right side, you could write [ sin²(a) ] .
Now look back about 9 lines, and compare that to the result we got for the left side .
They look quite similar. In fact, they're identical. And so the identity is proven.
Whew !
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.