Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.


(x[tex](x^{2}-6x-16)divided(x+2)
[/tex]


Sagot :

Lilith
[tex]\frac{x^{2}-6x-16}{x+2}=\frac{x^{2}-6x-2x+2x-16}{x+2}=\frac{x^{2}-8x +2x-16}{x+2}=\\ \\ = \frac {( x -8 ) +2(x-8)}{x+2}=\frac {( x -8 )(x +2)}{x+2}=x-8[/tex]


In algebra, the polynomial remainder theorem or little Bézout's theorem is an application of Euclidean division of polynomials. It states that the remainder of the division of a polynomial  by a linear polynomial  is equal to  In particular,  is a divisor of  if and only if 

a = -2;
f(-2) = (-2)^2 -6*(-2) -16 = 4 + 12 - 16 = 0 => x-(-2) is a divisor of x^2-6x-16.