At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

The sides of a square are 3 cm long. One vertex of the
square is at (2,0) on a square coordinate grid marked in
centimeter units. Which of the following points could
also be a vertex of the square?
F. (−4, 0)
G. ( 0, 1)
H. ( 1,−1)
J. ( 4, 1)
K. ( 5, 0)


Sagot :

K (5.0) It's easy just use 2plus3and that's it.

Answer:  The required point that could also be a vertex of the square is K(5, 0).

Step-by-step explanation:  Given that the sides of a square are 3 cm long and one vertex of the  square is at (2,0) on a square coordinate grid marked in  centimeter units.

We are to select the co-ordinates of the point that could also be a vertex of the square.

To be a vertex of the given square, the distance between the point and the vertex at (2, 0) must be 3 cm.

Now, we will be suing the distance formula to calculate the lengths of the segment from the point to the vertex (2, 0).

If the point is F(-4, 0), then the length of the line segment will be

[tex]\ell=\sqrt{(-4-2)^2+(0-0)^2}=\sqrt{6^2+0^2}=\sqrt{6^2}=6~\textup{cm}\neq 3~\textup{cm}.[/tex]

If the point is G(0, 1), then the length of the line segment will be

[tex]\ell=\sqrt{(0-2)^2+(1-0)^2}=\sqrt{2^2+1^2}=\sqrt{4+1}=\sqrt5~\textup{cm}\neq 3~\textup{cm}.[/tex]

If the point is H(1, -1), then the length of the line segment will be

[tex]\ell=\sqrt{(1-2)^2+(-1-0)^2}=\sqrt{1^2+1^2}=\sqrt{1+1}=\sqrt2~\textup{cm}\neq 3~\textup{cm}.[/tex]

If the point is J(4, 1), then the length of the line segment will be

[tex]\ell=\sqrt{(4-2)^2+(1-0)^2}=\sqrt{2^2+1^2}=\sqrt{4+1}=\sqrt5~\textup{cm}\neq 3~\textup{cm}.[/tex]

If the point is K(5, 0), then the length of the line segment will be

[tex]\ell=\sqrt{(5-2)^2+(0-0)^2}=\sqrt{3^2+0^2}=\sqrt{3^2}=3~\textup{cm}.[/tex]

Thus, the required point that could also be a vertex of the square is K(5, 0).

Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.