Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer: The required point that could also be a vertex of the square is K(5, 0).
Step-by-step explanation: Given that the sides of a square are 3 cm long and one vertex of the square is at (2,0) on a square coordinate grid marked in centimeter units.
We are to select the co-ordinates of the point that could also be a vertex of the square.
To be a vertex of the given square, the distance between the point and the vertex at (2, 0) must be 3 cm.
Now, we will be suing the distance formula to calculate the lengths of the segment from the point to the vertex (2, 0).
If the point is F(-4, 0), then the length of the line segment will be
[tex]\ell=\sqrt{(-4-2)^2+(0-0)^2}=\sqrt{6^2+0^2}=\sqrt{6^2}=6~\textup{cm}\neq 3~\textup{cm}.[/tex]
If the point is G(0, 1), then the length of the line segment will be
[tex]\ell=\sqrt{(0-2)^2+(1-0)^2}=\sqrt{2^2+1^2}=\sqrt{4+1}=\sqrt5~\textup{cm}\neq 3~\textup{cm}.[/tex]
If the point is H(1, -1), then the length of the line segment will be
[tex]\ell=\sqrt{(1-2)^2+(-1-0)^2}=\sqrt{1^2+1^2}=\sqrt{1+1}=\sqrt2~\textup{cm}\neq 3~\textup{cm}.[/tex]
If the point is J(4, 1), then the length of the line segment will be
[tex]\ell=\sqrt{(4-2)^2+(1-0)^2}=\sqrt{2^2+1^2}=\sqrt{4+1}=\sqrt5~\textup{cm}\neq 3~\textup{cm}.[/tex]
If the point is K(5, 0), then the length of the line segment will be
[tex]\ell=\sqrt{(5-2)^2+(0-0)^2}=\sqrt{3^2+0^2}=\sqrt{3^2}=3~\textup{cm}.[/tex]
Thus, the required point that could also be a vertex of the square is K(5, 0).
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.