Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Answer:
[tex]\displaystyle \frac{ds}{dt} = 12e^{3t}[/tex]
General Formulas and Concepts:
Algebra I
- Functions
- Function Notation
Calculus
Derivatives
Derivative Notation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
eˣ Derivative: [tex]\displaystyle \frac{d}{dx} [e^u]=e^u \cdot u'[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle s = 4e^{3t} - e^{-2.5}[/tex]
Step 2: Differentiate
- eˣ Derivative: [tex]\displaystyle \frac{ds}{dt} = 4e^{3t} \cdot \frac{d}{dt}[3t] - \frac{d}{dt}[e^{-2.5}][/tex]
- Basic Power Rule: [tex]\displaystyle \frac{ds}{dt} = 4e^{3t} \cdot 3t^{1 - 1} - 0[/tex]
- Simplify: [tex]\displaystyle \frac{ds}{dt} = 12e^{3t}[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.