Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
This is a geometric sequence. The first term is the max height of the first curved path, which is 0.5. The second one is 52% of that meaning that it is 0.52 times the first term. The third term is 0.52 times the second term. Thus, in this geometric sequence,
[tex]a = 0.5 [/tex]
[tex]r = 0.52 [/tex]
You will need to use the relation [tex] a_n = a \cdot r^{n-1} [/tex]
[tex]a = 0.5 [/tex]
[tex]r = 0.52 [/tex]
You will need to use the relation [tex] a_n = a \cdot r^{n-1} [/tex]
Answer:
- [tex]f(n)=0.5(0.52)^{n-1}[/tex]
- 0.14 m
Step-by-step explanation:
The initial height of the ball is 0.5 m
Each curved path has 52% of the height of the previous path, i.e the height of the ball after one bounce will be,
[tex]=\dfrac{52}{100}\times 0.5\\\\=0.52\times 0.5\ m[/tex]
The height of the ball after 2 bounces will be,
[tex]=\dfrac{52}{100}\times(0.52\times 0.5)[/tex]
[tex]=0.52\times0.52\times 0.5[/tex]
[tex]=0.52^2\times 0.5\ m[/tex]
Hence the series becomes,
[tex]0.5,0.5(0.52),0.5(0.52)^2,............[/tex]
This is the case of Geometric Progression.
But as it is given that the initial height will be given by n=1, so the rules for finding the height f(n) after n bounces would be,
[tex]f(n)=0.5(0.52)^{n-1}[/tex]
Putting n=3, we can get the height of the ball of the third path,
[tex]\Rightarrow f(3)=0.5(0.52)^{3-1}=0.5(0.52)^{2}=0.14\ m[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.