Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
This is a geometric sequence. The first term is the max height of the first curved path, which is 0.5. The second one is 52% of that meaning that it is 0.52 times the first term. The third term is 0.52 times the second term. Thus, in this geometric sequence,
[tex]a = 0.5 [/tex]
[tex]r = 0.52 [/tex]
You will need to use the relation [tex] a_n = a \cdot r^{n-1} [/tex]
[tex]a = 0.5 [/tex]
[tex]r = 0.52 [/tex]
You will need to use the relation [tex] a_n = a \cdot r^{n-1} [/tex]
Answer:
- [tex]f(n)=0.5(0.52)^{n-1}[/tex]
- 0.14 m
Step-by-step explanation:
The initial height of the ball is 0.5 m
Each curved path has 52% of the height of the previous path, i.e the height of the ball after one bounce will be,
[tex]=\dfrac{52}{100}\times 0.5\\\\=0.52\times 0.5\ m[/tex]
The height of the ball after 2 bounces will be,
[tex]=\dfrac{52}{100}\times(0.52\times 0.5)[/tex]
[tex]=0.52\times0.52\times 0.5[/tex]
[tex]=0.52^2\times 0.5\ m[/tex]
Hence the series becomes,
[tex]0.5,0.5(0.52),0.5(0.52)^2,............[/tex]
This is the case of Geometric Progression.
But as it is given that the initial height will be given by n=1, so the rules for finding the height f(n) after n bounces would be,
[tex]f(n)=0.5(0.52)^{n-1}[/tex]
Putting n=3, we can get the height of the ball of the third path,
[tex]\Rightarrow f(3)=0.5(0.52)^{3-1}=0.5(0.52)^{2}=0.14\ m[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.