Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
1. x = 1/ ( [tex] \sqrt{3} - \sqrt{2)} [/tex] = [tex] \sqrt{3}+ \sqrt{2} [/tex];
( [tex] \sqrt{x} -1/ \sqrt{x} )^{2} = x + 1/x - 2 =[/tex] =
( [tex] \sqrt{x} -1/ \sqrt{x} )^{2} = x + 1/x - 2 =[/tex] =
Answer with explanation:
Ques 1)
[tex]x=\dfrac{1}{\sqrt{3}-\sqrt{2}}[/tex]
Now we are asked to find the value of:
[tex]\sqrt{x}-\dfrac{1}{\sqrt{x}}[/tex]
We know that:
[tex](\sqrt{x}-\dfrac{1}{\sqrt{x}})^2=x+\dfrac{1}{x}-2[/tex]
Also:
[tex]x=\dfrac{1}{\sqrt{3}-\sqrt{2}}[/tex] could be written as:
[tex]x=\dfrac{1}{\sqrt{3}-\sqrt{2}}\times \dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}\\\\\\x=\dfrac{\sqrt{3}+\sqrt{2}}{(\sqrt{3})^2-(\sqrt{2})^2}[/tex]
since, we know that:
[tex](a+b)(a-b)=a^2-b^2[/tex]
Hence,
[tex]x=\dfrac{\sqrt{3}+\sqrt{2}}{3-2}\\\\\\x=\sqrt{3}+\sqrt{2}[/tex]
Also,
[tex]\dfrac{1}{x}=\sqrt{3}-\sqrt{2}[/tex]
Hence, we get:
[tex](\sqrt{x}-\dfrac{1}{\sqrt{x}})^2=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}-2\\\\\\(\sqrt{x}-\dfrac{1}{\sqrt{x}})^2=2\sqrt{3}-2\\\\\\\sqrt{x}-\dfrac{1}{\sqrt{x}}=\sqrt{2\sqrt{3}-2}[/tex]
Hence,
[tex]\sqrt{x}-\dfrac{1}{\sqrt{x}}=\sqrt{2\sqrt{3}-2}[/tex]
Ques 2)
[tex]x=\dfrac{\sqrt{a+2b}+\sqrt{a-2b}}{\sqrt{a+2b}-\sqrt{a-2b}}[/tex]
on multiplying and dividing by conjugate of denominator we get:
[tex]x=\dfrac{\sqrt{a+2b}+\sqrt{a-2b}}{\sqrt{a+2b}-\sqrt{a-2b}}\times \dfrac{\sqrt{a+2b}+\sqrt{a-2b}}{\sqrt{a+2b}+\sqrt{a-2b}}\\\\\\x=\dfrac{(\sqrt{a+2b}+\sqrt{a-2b})^2}{(\sqrt{a+2b})^2-(\sqrt{a-2b})^2}\\\\\\x=\dfrac{(\sqrt{a+2b})^2+(\sqrt{a-2b})^2+2\sqrt{a+2b}\sqrt{a-2b}}{a+2b-a+2b}\\\\\\x=\dfrac{a+2b+a-2b+2\sqrt{a+2b}\sqrt{a-2b}}{4b}\\\\\\x=\dfrac{2a+2\sqrt{a^2-4b^2}}{4b}\\\\\\x^2=(\dfrac{2a+2\sqrt{a^2-4b^2}}{4b})^2\\\\\\x^2=\dfrac{(2a+2\sqrt{a^2-4b^2})^2}{16b^2}[/tex]
Hence, we have:
[tex]x^2=\dfrac{4a^2+4(a^2-4b^2)+8a\sqrt{a^2-4b^2}}{16b^2}\\\\\\x^2=\dfrac{4a^2+4a^2-16b^2+8a\sqrt{a^2-4b^2}}{16b^2}\\\\\\\\x^2=\dfrac{8a^2-16b^2+8a\sqrt{a^2-4b^2}}{16b^2}\\\\\\bx^2=\dfrac{8a^2-16b^2+8a\sqrt{a^2-4b^2}}{16b}\\\\\\bx^2=\dfrac{8a(a+\sqrt{a^2-4b^2})-16b^2}{16b}\\\\\\bx^2=\dfrac{8a(a+\sqrt{a^2-4b^2})}{16b}-\dfrac{16b^2}{16b}\\\\\\bx^2=\dfrac{a(a+\sqrt{a^2-4b^2})}{2b}-b\\\\\\bx^2=ax-b\\\\\\i.e.\\\\\\bx^2-ax+b=0[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.