Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
1. x = 1/ ( [tex] \sqrt{3} - \sqrt{2)} [/tex] = [tex] \sqrt{3}+ \sqrt{2} [/tex];
( [tex] \sqrt{x} -1/ \sqrt{x} )^{2} = x + 1/x - 2 =[/tex] =
( [tex] \sqrt{x} -1/ \sqrt{x} )^{2} = x + 1/x - 2 =[/tex] =
Answer with explanation:
Ques 1)
[tex]x=\dfrac{1}{\sqrt{3}-\sqrt{2}}[/tex]
Now we are asked to find the value of:
[tex]\sqrt{x}-\dfrac{1}{\sqrt{x}}[/tex]
We know that:
[tex](\sqrt{x}-\dfrac{1}{\sqrt{x}})^2=x+\dfrac{1}{x}-2[/tex]
Also:
[tex]x=\dfrac{1}{\sqrt{3}-\sqrt{2}}[/tex] could be written as:
[tex]x=\dfrac{1}{\sqrt{3}-\sqrt{2}}\times \dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}\\\\\\x=\dfrac{\sqrt{3}+\sqrt{2}}{(\sqrt{3})^2-(\sqrt{2})^2}[/tex]
since, we know that:
[tex](a+b)(a-b)=a^2-b^2[/tex]
Hence,
[tex]x=\dfrac{\sqrt{3}+\sqrt{2}}{3-2}\\\\\\x=\sqrt{3}+\sqrt{2}[/tex]
Also,
[tex]\dfrac{1}{x}=\sqrt{3}-\sqrt{2}[/tex]
Hence, we get:
[tex](\sqrt{x}-\dfrac{1}{\sqrt{x}})^2=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}-2\\\\\\(\sqrt{x}-\dfrac{1}{\sqrt{x}})^2=2\sqrt{3}-2\\\\\\\sqrt{x}-\dfrac{1}{\sqrt{x}}=\sqrt{2\sqrt{3}-2}[/tex]
Hence,
[tex]\sqrt{x}-\dfrac{1}{\sqrt{x}}=\sqrt{2\sqrt{3}-2}[/tex]
Ques 2)
[tex]x=\dfrac{\sqrt{a+2b}+\sqrt{a-2b}}{\sqrt{a+2b}-\sqrt{a-2b}}[/tex]
on multiplying and dividing by conjugate of denominator we get:
[tex]x=\dfrac{\sqrt{a+2b}+\sqrt{a-2b}}{\sqrt{a+2b}-\sqrt{a-2b}}\times \dfrac{\sqrt{a+2b}+\sqrt{a-2b}}{\sqrt{a+2b}+\sqrt{a-2b}}\\\\\\x=\dfrac{(\sqrt{a+2b}+\sqrt{a-2b})^2}{(\sqrt{a+2b})^2-(\sqrt{a-2b})^2}\\\\\\x=\dfrac{(\sqrt{a+2b})^2+(\sqrt{a-2b})^2+2\sqrt{a+2b}\sqrt{a-2b}}{a+2b-a+2b}\\\\\\x=\dfrac{a+2b+a-2b+2\sqrt{a+2b}\sqrt{a-2b}}{4b}\\\\\\x=\dfrac{2a+2\sqrt{a^2-4b^2}}{4b}\\\\\\x^2=(\dfrac{2a+2\sqrt{a^2-4b^2}}{4b})^2\\\\\\x^2=\dfrac{(2a+2\sqrt{a^2-4b^2})^2}{16b^2}[/tex]
Hence, we have:
[tex]x^2=\dfrac{4a^2+4(a^2-4b^2)+8a\sqrt{a^2-4b^2}}{16b^2}\\\\\\x^2=\dfrac{4a^2+4a^2-16b^2+8a\sqrt{a^2-4b^2}}{16b^2}\\\\\\\\x^2=\dfrac{8a^2-16b^2+8a\sqrt{a^2-4b^2}}{16b^2}\\\\\\bx^2=\dfrac{8a^2-16b^2+8a\sqrt{a^2-4b^2}}{16b}\\\\\\bx^2=\dfrac{8a(a+\sqrt{a^2-4b^2})-16b^2}{16b}\\\\\\bx^2=\dfrac{8a(a+\sqrt{a^2-4b^2})}{16b}-\dfrac{16b^2}{16b}\\\\\\bx^2=\dfrac{a(a+\sqrt{a^2-4b^2})}{2b}-b\\\\\\bx^2=ax-b\\\\\\i.e.\\\\\\bx^2-ax+b=0[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.