Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
1. x = 1/ ( [tex] \sqrt{3} - \sqrt{2)} [/tex] = [tex] \sqrt{3}+ \sqrt{2} [/tex];
( [tex] \sqrt{x} -1/ \sqrt{x} )^{2} = x + 1/x - 2 =[/tex] =
( [tex] \sqrt{x} -1/ \sqrt{x} )^{2} = x + 1/x - 2 =[/tex] =
Answer with explanation:
Ques 1)
[tex]x=\dfrac{1}{\sqrt{3}-\sqrt{2}}[/tex]
Now we are asked to find the value of:
[tex]\sqrt{x}-\dfrac{1}{\sqrt{x}}[/tex]
We know that:
[tex](\sqrt{x}-\dfrac{1}{\sqrt{x}})^2=x+\dfrac{1}{x}-2[/tex]
Also:
[tex]x=\dfrac{1}{\sqrt{3}-\sqrt{2}}[/tex] could be written as:
[tex]x=\dfrac{1}{\sqrt{3}-\sqrt{2}}\times \dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}\\\\\\x=\dfrac{\sqrt{3}+\sqrt{2}}{(\sqrt{3})^2-(\sqrt{2})^2}[/tex]
since, we know that:
[tex](a+b)(a-b)=a^2-b^2[/tex]
Hence,
[tex]x=\dfrac{\sqrt{3}+\sqrt{2}}{3-2}\\\\\\x=\sqrt{3}+\sqrt{2}[/tex]
Also,
[tex]\dfrac{1}{x}=\sqrt{3}-\sqrt{2}[/tex]
Hence, we get:
[tex](\sqrt{x}-\dfrac{1}{\sqrt{x}})^2=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}-2\\\\\\(\sqrt{x}-\dfrac{1}{\sqrt{x}})^2=2\sqrt{3}-2\\\\\\\sqrt{x}-\dfrac{1}{\sqrt{x}}=\sqrt{2\sqrt{3}-2}[/tex]
Hence,
[tex]\sqrt{x}-\dfrac{1}{\sqrt{x}}=\sqrt{2\sqrt{3}-2}[/tex]
Ques 2)
[tex]x=\dfrac{\sqrt{a+2b}+\sqrt{a-2b}}{\sqrt{a+2b}-\sqrt{a-2b}}[/tex]
on multiplying and dividing by conjugate of denominator we get:
[tex]x=\dfrac{\sqrt{a+2b}+\sqrt{a-2b}}{\sqrt{a+2b}-\sqrt{a-2b}}\times \dfrac{\sqrt{a+2b}+\sqrt{a-2b}}{\sqrt{a+2b}+\sqrt{a-2b}}\\\\\\x=\dfrac{(\sqrt{a+2b}+\sqrt{a-2b})^2}{(\sqrt{a+2b})^2-(\sqrt{a-2b})^2}\\\\\\x=\dfrac{(\sqrt{a+2b})^2+(\sqrt{a-2b})^2+2\sqrt{a+2b}\sqrt{a-2b}}{a+2b-a+2b}\\\\\\x=\dfrac{a+2b+a-2b+2\sqrt{a+2b}\sqrt{a-2b}}{4b}\\\\\\x=\dfrac{2a+2\sqrt{a^2-4b^2}}{4b}\\\\\\x^2=(\dfrac{2a+2\sqrt{a^2-4b^2}}{4b})^2\\\\\\x^2=\dfrac{(2a+2\sqrt{a^2-4b^2})^2}{16b^2}[/tex]
Hence, we have:
[tex]x^2=\dfrac{4a^2+4(a^2-4b^2)+8a\sqrt{a^2-4b^2}}{16b^2}\\\\\\x^2=\dfrac{4a^2+4a^2-16b^2+8a\sqrt{a^2-4b^2}}{16b^2}\\\\\\\\x^2=\dfrac{8a^2-16b^2+8a\sqrt{a^2-4b^2}}{16b^2}\\\\\\bx^2=\dfrac{8a^2-16b^2+8a\sqrt{a^2-4b^2}}{16b}\\\\\\bx^2=\dfrac{8a(a+\sqrt{a^2-4b^2})-16b^2}{16b}\\\\\\bx^2=\dfrac{8a(a+\sqrt{a^2-4b^2})}{16b}-\dfrac{16b^2}{16b}\\\\\\bx^2=\dfrac{a(a+\sqrt{a^2-4b^2})}{2b}-b\\\\\\bx^2=ax-b\\\\\\i.e.\\\\\\bx^2-ax+b=0[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.