Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
[tex]\sqrt{50x^2}:\sqrt{32x^2}=\sqrt\frac{50x^2}{32x^2}=\sqrt{\frac{25}{16}}=\frac{5}{4}[/tex]
The quotient equivalent to the expression [tex]\sqrt{50x^3} \div \sqrt{32x^2}[/tex] is (5√x)/4.
Hence option B is the right choice.
How to find the quotient of an expression?
To find the quotient of an expression, we simplify the numerators and the denominators and then cancel off the like terms.
How to solve the question?
In the question, we are asked to find the equivalent expression to the quotient given by [tex]\sqrt{50x^3} \div \sqrt{32x^2}[/tex] .
To find the equivalent expression, we need to simplify the given quotient as follows:
{√(50x³)}/{√(32x²)}
= {√(25.2.x².x)}/{√(16.2.x²)} [Since, 50x³ = 25.2.x².x, and 32x² = 16.2.x²]
= {√(5².2.x².x)}/{√(4².2.x²)} [Since, 25 = 5², and 16 = 4²]
= (5x.√2.√x)/(4x√2) [Since, √(ab) = √a√b, and √a² = a]
= (5√x)/4 [Cancelling the like terms √2 and x].
Thus, the equivalent expression is (5√x)/4.
Thus, the quotient equivalent to the expression [tex]\sqrt{50x^3} \div \sqrt{32x^2}[/tex] is (5√x)/4. Hence option B is the right choice.
The question provided is incomplete. The complete question is provided in the attachment.
Learn more about finding quotients at
https://brainly.com/question/409874
#SPJ2
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.