Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
c = speed of light in vacuum = about 3 x 10⁸ meters/second
h = Planck's Konstant = 6.63 x 10⁻ ³⁴ joule-second
Energy = (h x frequency) = (h c / wavelength)
Wavelength = (h c) / (energy)
Wavelength = (6.63 x 10^-34 joule-sec x 3 x 10^8 meter/sec) / (5 x 10^-27 joule)
= 19.89 x 10^-26 / 5 x 10^-27 = 39.78 meters
This is an astonishing result ! Simply amazing. That wavelength corresponds
to a frequency of about 7.54 MHz, in one of the short-wave radio bands used by
a lot of foreign-broadcast stations.
If the number in the problem is correct, it means that this 'photocell' responds
to any electromagnetic signal at 7.54 MHz or above ... short-wave radio,
commercial FM or TV signals, FRS walkie-talkies, garage-door openers,
Bluetooth thingies, home WiFi boxes, WiFi from a laptop, microwave ovens,
cellphones, any signal from a satellite, any microwave dish, any heat lamp,
flashlight, LED, black light, or X-ray machine. Some "photocell" !
I'm thinking the number given in the problem for the energy of a photon
at the detection threshold of this device must be wrong by several orders
of magnitude.
(But my math is still bullet-proof.)
h = Planck's Konstant = 6.63 x 10⁻ ³⁴ joule-second
Energy = (h x frequency) = (h c / wavelength)
Wavelength = (h c) / (energy)
Wavelength = (6.63 x 10^-34 joule-sec x 3 x 10^8 meter/sec) / (5 x 10^-27 joule)
= 19.89 x 10^-26 / 5 x 10^-27 = 39.78 meters
This is an astonishing result ! Simply amazing. That wavelength corresponds
to a frequency of about 7.54 MHz, in one of the short-wave radio bands used by
a lot of foreign-broadcast stations.
If the number in the problem is correct, it means that this 'photocell' responds
to any electromagnetic signal at 7.54 MHz or above ... short-wave radio,
commercial FM or TV signals, FRS walkie-talkies, garage-door openers,
Bluetooth thingies, home WiFi boxes, WiFi from a laptop, microwave ovens,
cellphones, any signal from a satellite, any microwave dish, any heat lamp,
flashlight, LED, black light, or X-ray machine. Some "photocell" !
I'm thinking the number given in the problem for the energy of a photon
at the detection threshold of this device must be wrong by several orders
of magnitude.
(But my math is still bullet-proof.)
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.