Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
c = speed of light in vacuum = about 3 x 10⁸ meters/second
h = Planck's Konstant = 6.63 x 10⁻ ³⁴ joule-second
Energy = (h x frequency) = (h c / wavelength)
Wavelength = (h c) / (energy)
Wavelength = (6.63 x 10^-34 joule-sec x 3 x 10^8 meter/sec) / (5 x 10^-27 joule)
= 19.89 x 10^-26 / 5 x 10^-27 = 39.78 meters
This is an astonishing result ! Simply amazing. That wavelength corresponds
to a frequency of about 7.54 MHz, in one of the short-wave radio bands used by
a lot of foreign-broadcast stations.
If the number in the problem is correct, it means that this 'photocell' responds
to any electromagnetic signal at 7.54 MHz or above ... short-wave radio,
commercial FM or TV signals, FRS walkie-talkies, garage-door openers,
Bluetooth thingies, home WiFi boxes, WiFi from a laptop, microwave ovens,
cellphones, any signal from a satellite, any microwave dish, any heat lamp,
flashlight, LED, black light, or X-ray machine. Some "photocell" !
I'm thinking the number given in the problem for the energy of a photon
at the detection threshold of this device must be wrong by several orders
of magnitude.
(But my math is still bullet-proof.)
h = Planck's Konstant = 6.63 x 10⁻ ³⁴ joule-second
Energy = (h x frequency) = (h c / wavelength)
Wavelength = (h c) / (energy)
Wavelength = (6.63 x 10^-34 joule-sec x 3 x 10^8 meter/sec) / (5 x 10^-27 joule)
= 19.89 x 10^-26 / 5 x 10^-27 = 39.78 meters
This is an astonishing result ! Simply amazing. That wavelength corresponds
to a frequency of about 7.54 MHz, in one of the short-wave radio bands used by
a lot of foreign-broadcast stations.
If the number in the problem is correct, it means that this 'photocell' responds
to any electromagnetic signal at 7.54 MHz or above ... short-wave radio,
commercial FM or TV signals, FRS walkie-talkies, garage-door openers,
Bluetooth thingies, home WiFi boxes, WiFi from a laptop, microwave ovens,
cellphones, any signal from a satellite, any microwave dish, any heat lamp,
flashlight, LED, black light, or X-ray machine. Some "photocell" !
I'm thinking the number given in the problem for the energy of a photon
at the detection threshold of this device must be wrong by several orders
of magnitude.
(But my math is still bullet-proof.)
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.