Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

find the amplitude, period, and phase shift of the function defined by:
y=3-2cos(3x+pi)


Sagot :

AL2006
This is a sinusoidal wave with an amplitude of 2 , riding on a constant value of 3 .
The 3 isn't part of the function's amplitude ... the function wiggles between 2 under it
and 2 over it.

The period of the function is the change in 'x' that adds (2 pi) to the angle.

When x=0, the angle is pi

When the angle is (3 pi) . . .

3 pi = 3x + pi 
2 pi = 3x
x = 2/3 pi  The period of the function is 2/3 pi .

When x=0, the function is cos(pi) rather than cos(0).
So the function is a cosine with a phase shift of +pi.
It could also be described as a sine with a phase shift of -pi/2 or +3pi/2 .