At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Consider two linear transformations y = T(x) and z = L(y), where T goes from R^m to R^p and L goes from R^p to R^n. Is the transformationz = L(T(x)) linear as well ? [The transformation z = L(T(x)) is called the composite of T and L.]

Sagot :

Yes.

Proof: Consider x, y in R^m. Then since T is linear, we have:

T(a*x + b*y) = a*T(x) + b*T(y)

But since L is linear, we have:

L(a*T(x) + b*T(y)) = a*L(T(x)) + b*L(T(y))

So:

L(T(a*x + b*y)) = a*L(T(x)) + b*L(T(y))

and the composition is linear.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.