Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Consider two linear transformations y = T(x) and z = L(y), where T goes from R^m to R^p and L goes from R^p to R^n. Is the transformationz = L(T(x)) linear as well ? [The transformation z = L(T(x)) is called the composite of T and L.]

Sagot :

Yes.

Proof: Consider x, y in R^m. Then since T is linear, we have:

T(a*x + b*y) = a*T(x) + b*T(y)

But since L is linear, we have:

L(a*T(x) + b*T(y)) = a*L(T(x)) + b*L(T(y))

So:

L(T(a*x + b*y)) = a*L(T(x)) + b*L(T(y))

and the composition is linear.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.