Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Lets consider the side of square be 'x' units
So as per data,
Length of rectangle is x+5
Breadth of rectangle is x/2
and also as per data, the areas of rectangle and square are equal.
Area of rectangle = Length * Breadth = (x+5)*x/2 = [tex]( x^{2} +5x)/2[/tex] <- equation1
Area of square = Side* Side= x*x = [tex] x^{2} [/tex] <- equation2
As per given data, Equation1 and equation 2 are equal
so
[tex]( x^{2} +5x)/2[/tex] = tex] x^{2} [/tex]
[tex] x^{2} +5x = 2 x^{2} [/tex]
[tex]2 x^{2} - x^{2} = 5x[/tex]
[tex] x^{2} = 5x[/tex]
x = 5
So the side of square = 5 units
For Square, both dimensions are equal.
So as per data,
Length of rectangle is x+5
Breadth of rectangle is x/2
and also as per data, the areas of rectangle and square are equal.
Area of rectangle = Length * Breadth = (x+5)*x/2 = [tex]( x^{2} +5x)/2[/tex] <- equation1
Area of square = Side* Side= x*x = [tex] x^{2} [/tex] <- equation2
As per given data, Equation1 and equation 2 are equal
so
[tex]( x^{2} +5x)/2[/tex] = tex] x^{2} [/tex]
[tex] x^{2} +5x = 2 x^{2} [/tex]
[tex]2 x^{2} - x^{2} = 5x[/tex]
[tex] x^{2} = 5x[/tex]
x = 5
So the side of square = 5 units
For Square, both dimensions are equal.
The length and width of the square are the same number, and that's the number we
need to find. Eleven out of every ten people who attack this problem will call it ' S '.
The area of the square is S² .
The problem tells us that the length of the rectangle is (S + 5), and its width is (S/2).
Like all rectangles, its area is (length) x (width), and we're told that its area is the same
as the area of the square, so
(S + 5) (S/2) = S²
The slickest way to proceed from here is to divide each side of the equation by ' S ':
(S + 5) (1/2) = S
Multiply each side by 2 :
S + 5 = 2S
Subtract ' S ' from each side:
S = 5 units.
need to find. Eleven out of every ten people who attack this problem will call it ' S '.
The area of the square is S² .
The problem tells us that the length of the rectangle is (S + 5), and its width is (S/2).
Like all rectangles, its area is (length) x (width), and we're told that its area is the same
as the area of the square, so
(S + 5) (S/2) = S²
The slickest way to proceed from here is to divide each side of the equation by ' S ':
(S + 5) (1/2) = S
Multiply each side by 2 :
S + 5 = 2S
Subtract ' S ' from each side:
S = 5 units.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.