Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

x and y are two different numbers selected from the first fifty counting numbers from 1 to 50 inclusive.
what is the largest value that (x+y) / (x-y) can have?


Sagot :

The largest value  will be for x=50 and y=49.

[tex]\frac{50+49}{50-49}=\frac{99}{1}=99[/tex]
AL2006
In order to make a fraction as large as possible, you want the numerator to be large, and the denominator to be small.

Using the counting numbers, the smallest denominator (x - y) you can make is ' 1 '.
Now you just have to make the numerator large. You do that simply by using the largest two numbers you have available . . . 49 and 50 .

Now the fraction is (49 + 50) / 1 = 99 .