Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
[tex]k:\ y = x-11\ \ \ \Leftrightarrow\ \ \ x-y-11=0\\ and\\ l:\ y = x-7\ \ \ \Leftrightarrow\ \ \ x-y-7=0\\\\the\ distance:\\\\ d(k;l)= \frac{\big{|-11-(-7)|}}{\big{ \sqrt{1^2+1^2} }} =\frac{\big{|-11+7|}}{\big{ \sqrt{2} }} =\frac{\big{|-4|}}{\big{ \sqrt{2} }} =\frac{\big{4\cdot \sqrt{2} }}{\big{ \sqrt{2}\cdot \sqrt{2} }} =\frac{\big{4 \sqrt{2} }}{\big{2 }} =2 \sqrt{2} [/tex]
[tex]Given \ the \ equations \ of \ two \ non-vertical \ parallel \ lines:\\\\y = mx+b_1\\y = mx+b_2\\\\the \ distance \ between \ them \ can \ be \ expressed \ as : \\\\d= \frac{|b_{1}-b_{2}|}{ \sqrt{ m^2+1} }[/tex]
[tex]y = x-11 \\ y = x-7 \\\\\\d= \frac{| -11- (-7)|}{ \sqrt{ 1^2+1} } =\frac{| -11+7|}{ \sqrt{ 1+1} } = \frac{|-4|}{ \sqrt{2} } = \frac{4}{ \sqrt{2} }\cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{4\sqrt{2}}{2}=2\sqrt{2}[/tex]
[tex]y = x-11 \\ y = x-7 \\\\\\d= \frac{| -11- (-7)|}{ \sqrt{ 1^2+1} } =\frac{| -11+7|}{ \sqrt{ 1+1} } = \frac{|-4|}{ \sqrt{2} } = \frac{4}{ \sqrt{2} }\cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{4\sqrt{2}}{2}=2\sqrt{2}[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.