Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
[tex]10x+y-the\ number\\\\ \left\{\begin{array}{ccc}x+y=7\\10y+x=10x+y+9\end{array}\right[/tex]
Let's say 'x' is the first digit in the number, and 'y' is the second one.
You already know that x + y = 7 . Now here comes the fun part:
'x' is in the ten's place, so its value in the number is 10x , and the value
of the whole number is (10x + y).
If you flip the digits around, then 'y' is in the ten's place, its value is 10y ,
and the value of the whole new number becomes (10y + x) .
The problem tells you that when they're flipped around, the value is 9 more.
(10y + x) = (10x + y) + 9 more
10y + x = 10x + y + 9
Just to make it neater and easier to handle, let's subtract 1x and 1y from each side:
9y = 9x + 9
Now. What to do with this.
Remember that one up at the top ... x + y = 7 ? That's just what we need now.
Call it [ y = 7 - x ], and we can plug that into the one we're struggling with:
9y = 9x + 9
9(7 - x) = 9x + 9
63 - 9x = 9x + 9
Subtract 9 from each side: 54 - 9x = 9x
Add 9x to each side: 54 = 18x
Divide each side by 18: 3 = x
Great. y = 7 - x y = 4
The original number is 34 . 3 + 4 = 7
Flip the digits, and you have 43 .
43 is 9 more than 34 .
yay.
======================================
That was the elegant but tedious way to do it.
Here is the brute-force but easy way to do it:
List of all the 2-digit numbers whose digits add up to 7, and their flips :
16 . . . . . 61
25 . . . . . 52
34 . . . . . 43
43 . . . . . 34
52 . . . . . 25
Do you see a number that becomes 9 greater when you flip it ?
Right there in the middle of the list . . . 34 ==> 43 .
You already know that x + y = 7 . Now here comes the fun part:
'x' is in the ten's place, so its value in the number is 10x , and the value
of the whole number is (10x + y).
If you flip the digits around, then 'y' is in the ten's place, its value is 10y ,
and the value of the whole new number becomes (10y + x) .
The problem tells you that when they're flipped around, the value is 9 more.
(10y + x) = (10x + y) + 9 more
10y + x = 10x + y + 9
Just to make it neater and easier to handle, let's subtract 1x and 1y from each side:
9y = 9x + 9
Now. What to do with this.
Remember that one up at the top ... x + y = 7 ? That's just what we need now.
Call it [ y = 7 - x ], and we can plug that into the one we're struggling with:
9y = 9x + 9
9(7 - x) = 9x + 9
63 - 9x = 9x + 9
Subtract 9 from each side: 54 - 9x = 9x
Add 9x to each side: 54 = 18x
Divide each side by 18: 3 = x
Great. y = 7 - x y = 4
The original number is 34 . 3 + 4 = 7
Flip the digits, and you have 43 .
43 is 9 more than 34 .
yay.
======================================
That was the elegant but tedious way to do it.
Here is the brute-force but easy way to do it:
List of all the 2-digit numbers whose digits add up to 7, and their flips :
16 . . . . . 61
25 . . . . . 52
34 . . . . . 43
43 . . . . . 34
52 . . . . . 25
Do you see a number that becomes 9 greater when you flip it ?
Right there in the middle of the list . . . 34 ==> 43 .
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.