Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
[tex]x+\frac{1}{x}=8\\\\\frac{x^2}{x}+\frac{1}{x}=8\\\\\frac{x^2+1}{x}=8\\\\x^2+1=8x\\\\x^2-8x+1=0[/tex]
[tex]a=1;\ b=-8;\ c=1\\\\\Delta=b^2-4ac\to\Delta=(-8)^2-4\cdot1\cdot1=64-4=60\\\\x_1=\frac{-b-\sqrt\Delta}{2a};\ x_2=\frac{-b+\sqrt\Delta}{2a}\\\\\sqrt\Delta=\sqrt{60}=\sqrt{4\cdot15}=2\sqrt{15}\\\\x_1=\frac{8-2\sqrt{15}}{2\cdot1}=4-\sqrt{15};\ x_2=\frac{8+2\sqrt{15}}{2\cdot1}=4+\sqrt{15}\\\\Answer:4-\sqrt{15}\ or\ 4+\sqrt{15}.[/tex]
[tex]a=1;\ b=-8;\ c=1\\\\\Delta=b^2-4ac\to\Delta=(-8)^2-4\cdot1\cdot1=64-4=60\\\\x_1=\frac{-b-\sqrt\Delta}{2a};\ x_2=\frac{-b+\sqrt\Delta}{2a}\\\\\sqrt\Delta=\sqrt{60}=\sqrt{4\cdot15}=2\sqrt{15}\\\\x_1=\frac{8-2\sqrt{15}}{2\cdot1}=4-\sqrt{15};\ x_2=\frac{8+2\sqrt{15}}{2\cdot1}=4+\sqrt{15}\\\\Answer:4-\sqrt{15}\ or\ 4+\sqrt{15}.[/tex]
You have said that x + 1/x = 8
Multiply each side by 'x' : x² + 1 = 8x
Subtract 8x from each side: x² - 8x + 1 = 0
Solving this quadratic equation by means of the quadratic formula,
(the procedure is left as an exercise for the student), the two
solutions are:
x = 4 + √15 = 7.873 (rounded)
and
x = 4 - √15 = 0.127 (rounded)
Multiply each side by 'x' : x² + 1 = 8x
Subtract 8x from each side: x² - 8x + 1 = 0
Solving this quadratic equation by means of the quadratic formula,
(the procedure is left as an exercise for the student), the two
solutions are:
x = 4 + √15 = 7.873 (rounded)
and
x = 4 - √15 = 0.127 (rounded)
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.