Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
[tex]Perimter\ of\ equilateral\ triangle\ =36\\ a- \ side\ of\ triangle\\ 36=3a\ |:3\\ a=12\\\\ Area\ of\ equilateral\ triangle:\\ A=\frac{a^2\sqrt{3}}{4}\\ A=\frac{12^2\sqrt{3}}{4}\\ A=\frac{144\sqrt{3}}{4}=36\sqrt3 \\\\ Hegagon\ can\ be\ divided\ into\ 6\ equilateral\ small\ triangles.\\Area\ of\ one\ of\ them: A_s=\frac{A}{6}=\frac{36\sqrt3}{6}=6\sqrt{3}\\ s-side\ of\ equilateral\ =\ side\ of\ small\ triangle\\ A_s=\frac{s^2\sqrt{3}}{4}=6\sqrt{3}\ |*4 \\ s^2\sqrt3=24\sqrt3\ |\sqrt3\\ s^2=24\\ s=\sqrt{24}[/tex][tex]\sqrt{24}=\sqrt{4*6}=2\sqrt6\\\\
Side\ of\ hexagon\ equals\ 2\sqrt6\ inches[/tex]
Answer:
[tex]2\sqrt{6}[/tex]
Step-by-step explanation:
Perimeter of equilateral triangle = 36 inches
Formula of perimeter of equilateral triangle = [tex]3\times side[/tex]
⇒[tex]36=3\times side[/tex]
⇒[tex]\frac{36}{3} = side[/tex]
⇒[tex]12= side[/tex]
Thus each side of equilateral triangle is 12 inches
Formula of area of equilateral triangle = [tex]\frac{\sqrt{3}}{4} a^{2}[/tex]
Where a is the side .
So, area of the given equilateral triangle = [tex]\frac{\sqrt{3}}{4} \times 12^{2}[/tex]
= [tex]36\sqrt{3}[/tex]
Since hexagon can be divided into six small equilateral triangle .
So, area of each small equilateral triangle = [tex]\frac{36\sqrt{3}}{6}[/tex]
= [tex]6\sqrt{3}[/tex]
So, The area of small equilateral triangle :
[tex]\frac{\sqrt{3}}{4}a^{2} =6\sqrt{3}[/tex]
Where a is the side of hexagon .
[tex]\frac{1}{4}a^{2} =6[/tex]
[tex]a^{2} =6\times 4[/tex]
[tex]a^{2} =24[/tex]
[tex]a =\sqrt{24}[/tex]
[tex]a =2\sqrt{6}[/tex]
Hence the length of a side of the regular hexagon is [tex]2\sqrt{6}[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.