Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
The correct answer is 6.
The clearest way to determine this is by creating a table of possible hand shaking. If we label the people A-D, the following are the ways they can be combined:
AB
AC
AD
BC
BD
CD
There are no other combinations.
The clearest way to determine this is by creating a table of possible hand shaking. If we label the people A-D, the following are the ways they can be combined:
AB
AC
AD
BC
BD
CD
There are no other combinations.
There are 6 handshakes between four people in the room.
Further explanation
The probability of an event is defined as the possibility of an event occurring against sample space.
[tex]\large { \boxed {P(A) = \frac{\text{Number of Favorable Outcomes to A}}{\text {Total Number of Outcomes}} } }[/tex]
Permutation ( Arrangement )
Permutation is the number of ways to arrange objects.
[tex]\large {\boxed {^nP_r = \frac{n!}{(n - r)!} } }[/tex]
Combination ( Selection )
Combination is the number of ways to select objects.
[tex]\large {\boxed {^nC_r = \frac{n!}{r! (n - r)!} } }[/tex]
Let us tackle the problem.
This problem is about Combination.
If there are 4 people in a room , then the number of handshaking between 2 people is analogy as selecting 2 people from 4 people available. We will use combination formula in this problem.
[tex]^4C_2 = \frac{4!}{2! (4-2)!}[/tex]
[tex]^4C_2 = \frac{4!}{2! 2!}[/tex]
[tex]^4C_2 = \frac{4 \times 3 \times 2 \times 1}{2 \times 1 \times 2 \times 1}[/tex]
[tex]^4C_2 = \frac{ 24 }{4}[/tex]
[tex]^4C_2 = \boxed{6}[/tex]
Learn more
- Different Birthdays : https://brainly.com/question/7567074
- Dependent or Independent Events : https://brainly.com/question/12029535
- Mutually exclusive : https://brainly.com/question/3464581
Answer details
Grade: High School
Subject: Mathematics
Chapter: Probability
Keywords: Probability , Sample , Space , Six , Dice , Die , Binomial , Distribution , Mean , Variance , Standard Deviation
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.