At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
[tex] (7,5);\ \ \ \ 2x - 3y=6 \ \ / subtract \ 2x \ from \ each \ side \\ \\-3y = -2x + 6\ \ / divide \ each \term \ by \ (-3) \\ \\ y = \frac{2} {3}x -2\\ \\ The \ slope \ is :m _{1} = \frac{ 2}{3} \\ \\ If \ m_{1} \ and \ m _{2} \ are \ the \ gradients \ of \ two \ perpendicular \\ \\ lines \ we \ have \\\\\ m _{1}*m _{2} = -1 [/tex]
[tex] \frac{2}{3}\cdot m_{2}=-1\ \ / \cdot (\frac{3}{2})\\\\m_{2}=-\frac{3}{2}\\\\Now \ your \ equation \ of \ line \ passing \ through \ (7,5) would \ be: \\ \\ y=m_{2}x+b \\ \\5=-\frac{3}{2}\cdot 7 + b \\ \\ 5= -\frac{21}{2}+b\\ \\b=5+\frac{21}{2} \\ \\b= \frac{10}{2}+\frac{21}{2}\\ \\b= \frac{31}{2}\\\\b=15.5 \\ \\ y = -\frac{3}{2}x +15.5[/tex]
[tex] \frac{2}{3}\cdot m_{2}=-1\ \ / \cdot (\frac{3}{2})\\\\m_{2}=-\frac{3}{2}\\\\Now \ your \ equation \ of \ line \ passing \ through \ (7,5) would \ be: \\ \\ y=m_{2}x+b \\ \\5=-\frac{3}{2}\cdot 7 + b \\ \\ 5= -\frac{21}{2}+b\\ \\b=5+\frac{21}{2} \\ \\b= \frac{10}{2}+\frac{21}{2}\\ \\b= \frac{31}{2}\\\\b=15.5 \\ \\ y = -\frac{3}{2}x +15.5[/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.