Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
[tex]The \ equation \ of \ a \ circle \ with \ centre \ (a,b) \ and \ radius \ "r" \ is : \\ \\(x-a)^2+(y-b)^2=r^2[/tex]
[tex](12,-14) , \ \ \ (2,4)\\Since \ the \ center \ of \ the \ circle \ is \ the \ midpoint \ of \ the \ line \ segment \\ connecting \ two \ endpoints \ of \ a \ diameter \\\\Midpoint \ Formula \\\\(a,b)=(\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2})=(\frac{12+2}{2},\frac{-14+4}{2})=(\frac{14}{2},\frac{-10}{2})=(7,-5)[/tex]
[tex]The \ radius \ is \ the \ distance \ from \ the \ center \ to \ some \ point \ on \ the \ circle.\\ The \ distance \ from \ (7,-5) \ to \ (12, -14) \ is: \\ \\ r= \sqrt{(x_{2}-x_{1})^2 +(y_{2}-y_{1})^2}\\\\r= \sqrt{(12-7)^2 +(-14+5)^2}=\sqrt{5^2+(-9)^2}=\sqrt{25+81}=\sqrt{106}\\\\(x-7)^2+(y-(-5))^2= (\sqrt{106})^2 \\ \\(x-7)^2+(y+5)^2=106[/tex]
[tex](12,-14) , \ \ \ (2,4)\\Since \ the \ center \ of \ the \ circle \ is \ the \ midpoint \ of \ the \ line \ segment \\ connecting \ two \ endpoints \ of \ a \ diameter \\\\Midpoint \ Formula \\\\(a,b)=(\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2})=(\frac{12+2}{2},\frac{-14+4}{2})=(\frac{14}{2},\frac{-10}{2})=(7,-5)[/tex]
[tex]The \ radius \ is \ the \ distance \ from \ the \ center \ to \ some \ point \ on \ the \ circle.\\ The \ distance \ from \ (7,-5) \ to \ (12, -14) \ is: \\ \\ r= \sqrt{(x_{2}-x_{1})^2 +(y_{2}-y_{1})^2}\\\\r= \sqrt{(12-7)^2 +(-14+5)^2}=\sqrt{5^2+(-9)^2}=\sqrt{25+81}=\sqrt{106}\\\\(x-7)^2+(y-(-5))^2= (\sqrt{106})^2 \\ \\(x-7)^2+(y+5)^2=106[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.