Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
[tex]The \ equation \ of \ a \ circle \ with \ centre \ (a,b) \ and \ radius \ "r" \ is : \\ \\(x-a)^2+(y-b)^2=r^2[/tex]
[tex](12,-14) , \ \ \ (2,4)\\Since \ the \ center \ of \ the \ circle \ is \ the \ midpoint \ of \ the \ line \ segment \\ connecting \ two \ endpoints \ of \ a \ diameter \\\\Midpoint \ Formula \\\\(a,b)=(\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2})=(\frac{12+2}{2},\frac{-14+4}{2})=(\frac{14}{2},\frac{-10}{2})=(7,-5)[/tex]
[tex]The \ radius \ is \ the \ distance \ from \ the \ center \ to \ some \ point \ on \ the \ circle.\\ The \ distance \ from \ (7,-5) \ to \ (12, -14) \ is: \\ \\ r= \sqrt{(x_{2}-x_{1})^2 +(y_{2}-y_{1})^2}\\\\r= \sqrt{(12-7)^2 +(-14+5)^2}=\sqrt{5^2+(-9)^2}=\sqrt{25+81}=\sqrt{106}\\\\(x-7)^2+(y-(-5))^2= (\sqrt{106})^2 \\ \\(x-7)^2+(y+5)^2=106[/tex]
[tex](12,-14) , \ \ \ (2,4)\\Since \ the \ center \ of \ the \ circle \ is \ the \ midpoint \ of \ the \ line \ segment \\ connecting \ two \ endpoints \ of \ a \ diameter \\\\Midpoint \ Formula \\\\(a,b)=(\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2})=(\frac{12+2}{2},\frac{-14+4}{2})=(\frac{14}{2},\frac{-10}{2})=(7,-5)[/tex]
[tex]The \ radius \ is \ the \ distance \ from \ the \ center \ to \ some \ point \ on \ the \ circle.\\ The \ distance \ from \ (7,-5) \ to \ (12, -14) \ is: \\ \\ r= \sqrt{(x_{2}-x_{1})^2 +(y_{2}-y_{1})^2}\\\\r= \sqrt{(12-7)^2 +(-14+5)^2}=\sqrt{5^2+(-9)^2}=\sqrt{25+81}=\sqrt{106}\\\\(x-7)^2+(y-(-5))^2= (\sqrt{106})^2 \\ \\(x-7)^2+(y+5)^2=106[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.