bbb911
Answered

Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

The length and width of a rectangle have a sum of 90. What dimensions give the maximum area?

Sagot :

2( l + w) = 90, where l, w are dimensions of the rectangle => l + w = 45;
The maximum area is obtain when l = w;
Then l = w = 45/2 = 22.5
[tex]w-width\\l-length\\\\2w+2l=90\\2l=90-2w\ \ \ \ /:2\\l=45-w\\\\A=wl\to A=w(45-w)=45w-w^2[/tex]

[tex]Area\ of\ a\ rectangle\ is\ a\ square\ function.\\The\ maximum\ area\ is\ equal\ to\ the\ y-coordinate\ of\ vertex\\and\ "w"\ is\ equal\ to\ the\ x-coordinate\ of\ vertex.\\\\A(w)=45w-w^2\\\\a=-1;\ b=45;\ c=0\\\\x-coordinate\ of\ vertex:\frac{-b}{2a}\\\\w=\frac{-45}{2\cdot(-1)}=\frac{-45}{-2}=22.5\\\\l=45-22.5=22.5\\\\Solution:22.5\times22.5\ \ (This\ rectangle\ is\ a\ square).[/tex]