Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
The ratio of the lengths is 75 : 25 or 3 : 1
The ratio of and area is the square of this: ie 9 : 1 or 75^2 : 25^2
(In working out the area the radius is squared)
The ratio of the volumes is the cube of this: ie 27 : 1 or 75^3 : 25^3
(In working out the volume the radius is cubed)
Hopefully this explains it
The ratio of and area is the square of this: ie 9 : 1 or 75^2 : 25^2
(In working out the area the radius is squared)
The ratio of the volumes is the cube of this: ie 27 : 1 or 75^3 : 25^3
(In working out the volume the radius is cubed)
Hopefully this explains it
Volume of a sphere:
[tex]V = \frac{4}{3}\pi r^3[/tex]
Combining dough is like combining volume. So we get
[tex]V_3=\frac{4}{3}\pi r_3^3=\frac{4}{3}\pi r_1^3 + \frac{4}{3}\pi r_2^3 = \frac{4}{3}\pi (r_1^3+r_2^3)[/tex]
Where [tex]V_3 [/tex] is the combined volume of dough of radii [tex]r_1[/tex] and [tex]r_2[/tex]
The new radius is therefore
[tex]r_3^3=r_1^3+r_2^3[/tex]
Substituting values we get
[tex]r_3^3=3^3+5^3=27+125=152[/tex]
[tex]r_3=\sqrt[3] 152 \approx 5.34[/tex]
So the new dough is 5.34 cm, just a bit larger.
Cylinders:
[tex]V=\pi r^2 h[/tex]
So volume is directly proportional to height, if radius is constant. So ratios stay the same. 75/25=3 and the volume is also 3 times larger (ratio 3:1).
[tex]V = \frac{4}{3}\pi r^3[/tex]
Combining dough is like combining volume. So we get
[tex]V_3=\frac{4}{3}\pi r_3^3=\frac{4}{3}\pi r_1^3 + \frac{4}{3}\pi r_2^3 = \frac{4}{3}\pi (r_1^3+r_2^3)[/tex]
Where [tex]V_3 [/tex] is the combined volume of dough of radii [tex]r_1[/tex] and [tex]r_2[/tex]
The new radius is therefore
[tex]r_3^3=r_1^3+r_2^3[/tex]
Substituting values we get
[tex]r_3^3=3^3+5^3=27+125=152[/tex]
[tex]r_3=\sqrt[3] 152 \approx 5.34[/tex]
So the new dough is 5.34 cm, just a bit larger.
Cylinders:
[tex]V=\pi r^2 h[/tex]
So volume is directly proportional to height, if radius is constant. So ratios stay the same. 75/25=3 and the volume is also 3 times larger (ratio 3:1).
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.