Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
[tex]The\ standard\ form\ of\ the\ circle:\\\\(x-a)^2+(y-b)^2=r^2\\\\where\\(a;\ b)\ are\ the\ coordinates\ of\ a\ center\ of\ the\ circle\\r\ is\ a\ radius\ of\ the\ circle\\------------------------[/tex]
[tex]2x^2+2y^2-20x-8y+50=0\ \ \ \ |divide\ both\ sides\ by\ 2\\\\x^2+y^2-10x-4y+25=0\\\\x^2-10x+y^2-4y=-25\\\\x^2-2x\cdot5+y^2-2y\cdot2=-25\\\\\underbrace{x^2-2x\cdot5+5^2}_{(*)}-5^2+\underbrace{y^2-2y\cdot2+2^2}_{(*)}-2^2=-25\\(x-5)^2-25+(y-2)^2-4=-25\\\\(x-5)^2+(y-2)^2-29=-25\\\\(x-5)^2+(y-2)^2=-25+29[/tex]
[tex]\boxed{(x-5)^2+(y-2)^2=4}\\\\the\ center:(5;\ 2)\\the\ radius:r=\sqrt4=2[/tex]
[tex](*)\ (a-b)^2=a^2-2ab+b^2[/tex]
[tex]2x^2+2y^2-20x-8y+50=0\ \ \ \ |divide\ both\ sides\ by\ 2\\\\x^2+y^2-10x-4y+25=0\\\\x^2-10x+y^2-4y=-25\\\\x^2-2x\cdot5+y^2-2y\cdot2=-25\\\\\underbrace{x^2-2x\cdot5+5^2}_{(*)}-5^2+\underbrace{y^2-2y\cdot2+2^2}_{(*)}-2^2=-25\\(x-5)^2-25+(y-2)^2-4=-25\\\\(x-5)^2+(y-2)^2-29=-25\\\\(x-5)^2+(y-2)^2=-25+29[/tex]
[tex]\boxed{(x-5)^2+(y-2)^2=4}\\\\the\ center:(5;\ 2)\\the\ radius:r=\sqrt4=2[/tex]
[tex](*)\ (a-b)^2=a^2-2ab+b^2[/tex]
[tex]"Standard Form" \ for \ the \ equation \ of \ a \ circle : \\\\(x-a)^2+(y-b)^2=r^2 \\ the \ center \ (a,b)\\radius \ r \\\\ 2x^2 + 2y^2 -20x - 8y + 50 = 0 \ \ \ Divide \ thru \ by \ 2 \\\\x^2 + y^2 -10x - 4y + 25 = 0[/tex]
[tex]x^2-10x +25 +y^2-4y +4-4 =0 \\\\(x^2-10x +25) +(y^2-4y +4)=4 \\\\(x-5)^2+(y-2)^2=2^2[/tex]
[tex]x^2-10x +25 +y^2-4y +4-4 =0 \\\\(x^2-10x +25) +(y^2-4y +4)=4 \\\\(x-5)^2+(y-2)^2=2^2[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.