Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Find 4 consecutive odd integers where the product of the two smaller numbers is 64 less than the product of the two larger numbers.

Sagot :

MattD
Odd number is: (2n-1), (2n+1), (2n+3), (2n+x),... where x x changes every two
(2n-1)(2n+1)=(2n+3)(2n+5)-64
[tex]4n^2-1=4n^2+10n+6n+15-64[/tex]
16n=48|:16
n=3
Now we substitute to (2n-1), (2n+1), (2n+3), (2n+5):
2n-1 = 2*3-1=5
2n+1 = 2*3+1=7
2n+3 = 2*3+3=9
2n+5 = 2*3+5=11
5,7,9,11
AL2006
If there are such numbers, then they can be written as 'x', (x + 2), (x + 4), and (x + 6).

Now, the problem says that  x(x+2) + 64 = (x+4) (x+6)

Expand each side:

x² + 2x + 64 = x² + 10x + 24

Subtract (x² + 24) from each side:

2x + 40 = 10x

Subtract 2x from each side:

40 = 8x

Divide each side by 8 :

x = 5

The numbers are 5, 7, 9, and 11.

(5 x 7) + 64 = 35 + 64 = 99  and  9 x 11 = 99 .    yay !