Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

A particle travels in a circle of radius 82 cm and with a centripetal acceleration of 4.7 m/s2. How long does the particle take to complete one revolution?


Sagot :

acceleration = r w²              radius r = 0.82 meter    angular velocity w

4.7  =  0.82  w²   
So  w = 2.394  radians / sec
Time period T = time duration for completing one revolution =  2 π / w
           = 2π / 2.394  = 2.624 seconds


Answer:

Time, T = 2.62 seconds

Explanation:

Given that,

Radius of the circular path, r = 82 cm = 0.82 m

Centripetal acceleration of the particle, [tex]a=4.7\ m/s^2[/tex]

To find,

Time taken to complete one revolution.

Solution,

The centripetal acceleration of the particle in circular path is given by :

[tex]a=\omega^2 r[/tex]

[tex]\omega[/tex] is the angular velocity of the particle

[tex]\omega=\sqrt{\dfrac{a}{r}}[/tex]

[tex]\omega=\sqrt{\dfrac{4.7}{0.82}}[/tex]    

[tex]\omega=2.39\ rad/s[/tex]

Let T is the time taken by the particle take to complete one revolution. The relation between the angular velocity and the time is given by :

[tex]T=\dfrac{2\pi}{\omega}[/tex]

[tex]T=\dfrac{2\pi}{2.39}[/tex]

T = 2.62 seconds

So, the time taken to complete one revolution is 2.62 seconds.

Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.