Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
[tex]\displaystyle R' = \frac{-50}{x(\ln x)^2}[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Quotient Rule]: [tex]\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle R = 100 + \frac{50}{\ln x}[/tex]
Step 2: Differentiate
- Derivative Property [Addition/Subtraction]: [tex]\displaystyle R' = \frac{d}{dx}[100] + \frac{d}{dx} \bigg[ \frac{50}{\ln x} \bigg][/tex]
- Rewrite [Derivative Property - Multiplied Constant]: [tex]\displaystyle R' = \frac{d}{dx}[100] + 50 \frac{d}{dx} \bigg[ \frac{1}{\ln x} \bigg][/tex]
- Basic Power Rule: [tex]\displaystyle R' = 50 \frac{d}{dx} \bigg[ \frac{1}{\ln x} \bigg][/tex]
- Derivative Rule [Quotient Rule]: [tex]\displaystyle R' = 50 \bigg(\frac{(1)' \ln x - (\ln x)'}{(\ln x)^2} \bigg)[/tex]
- Basic Power Rule: [tex]\displaystyle R' = 50 \bigg( \frac{-(\ln x)'}{(\ln x)^2} \bigg)[/tex]
- Logarithmic Differentiation: [tex]\displaystyle R' = 50 \bigg( \frac{\frac{-1}{x}}{(\ln x)^2} \bigg)[/tex]
- Simplify: [tex]\displaystyle R' = \frac{-50}{x(\ln x)^2}[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.