Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
[tex]n^{200}<5^{300}\\\\(n^2)^{100}<(5^3)^{100}\ \ \ \Rightarrow\ \ \ n^2<5^3\ \ \ \Rightarrow\ \ \ n^2<125\\\\n\in I\ \ \ \Rightarrow\ \ \ n< \sqrt{125} \ \ \ and\ \ \ \sqrt{125} =5 \sqrt{5} \approx11.18\\\\Ans.\ the\ largest\ integer\ n\ is\ 11[/tex]
Let us take logarithms on both sides.
200 log n < 300 log 5
So log n < 3/2 log 5
log n < log 5 power 3/2
n < 5 power 3/2
n < square root (5³) = √125
so n = 11
200 log n < 300 log 5
So log n < 3/2 log 5
log n < log 5 power 3/2
n < 5 power 3/2
n < square root (5³) = √125
so n = 11
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.