Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
[tex]n^{200}<5^{300}\\\\(n^2)^{100}<(5^3)^{100}\ \ \ \Rightarrow\ \ \ n^2<5^3\ \ \ \Rightarrow\ \ \ n^2<125\\\\n\in I\ \ \ \Rightarrow\ \ \ n< \sqrt{125} \ \ \ and\ \ \ \sqrt{125} =5 \sqrt{5} \approx11.18\\\\Ans.\ the\ largest\ integer\ n\ is\ 11[/tex]
Let us take logarithms on both sides.
200 log n < 300 log 5
So log n < 3/2 log 5
log n < log 5 power 3/2
n < 5 power 3/2
n < square root (5³) = √125
so n = 11
200 log n < 300 log 5
So log n < 3/2 log 5
log n < log 5 power 3/2
n < 5 power 3/2
n < square root (5³) = √125
so n = 11
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.