Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
for an ellipse x²/a² + y²/a² = 1
vertices are -a,0 a, 0 0,b 0, -b focus : √(a²-b²) , 0
center is origin 0,0
given ellipse : divide by 40 on both sides
x² / 8 + y²/5 = 1
So a = √8 = 2√2 b = √5
vertices are -2√2,0 2√2,0 0,√5 0,-√5
focii = √3, 0 -√3, 0
vertices are -a,0 a, 0 0,b 0, -b focus : √(a²-b²) , 0
center is origin 0,0
given ellipse : divide by 40 on both sides
x² / 8 + y²/5 = 1
So a = √8 = 2√2 b = √5
vertices are -2√2,0 2√2,0 0,√5 0,-√5
focii = √3, 0 -√3, 0
Answer:
Center of the ellipse = (0, 0)
vertices are (±√8, 0) and (0, ±√5)
Focus of the ellipse = (±√3, 0).
Step-by-step explanation:
Equation of an ellipse is given as 5x² + 8y² = 40
We will rewrite this equation in the vertex form
[tex]\frac{5x^{2}+8y^{2}}{40}=\frac{40}{40}[/tex]
⇒[tex]\frac{x^{2}}{8}+\frac{y^{2}}{5}=1[/tex]
⇒[tex]\frac{(x-0)^{2}}{8}+\frac{(y-0)^{2}}{5}=1[/tex]
This equation is in the form of
⇒[tex]\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1[/tex]
Then Center of the ellipse is (h, k) and major vertices will be (h±a, k) with minor vertices will be (h, k±b)
and focus is (h±c, k) where c =[tex]\sqrt{a^{2}-b^{2}}[/tex]
Now we put the values h = 0 and k = 0
Center of this ellipse will be (0, 0)
Vertices of the ellipse will be
Major vertices = (0±√8, 0) = (±√8, 0)
Minor vertices = (0, 0±√5) = (0, ±√5)
Now Focus of the ellipse = (0±c, 0)
where c = √(a² - b²) = √(8-5) = √3
Now focus is (±√3, 0).
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.